点击切换搜索课件文库搜索结果(6893)
文档格式:DOC 文档大小:29KB 文档页数:2
1.解: ① MOV AX,1234H 立即数寻址 ② MOV AX,BX 寄存器寻址 ③ MOV AX,[SI] 寄存器间接寻址 物理地址为0B100H ④ MOV AX,[1234H] 直接寻址 物理地址为0C234H ⑤ MOV AX,[B+400H] 基址寻址
文档格式:DOC 文档大小:189.5KB 文档页数:9
概率论第4章习题参考解答 1.若每次射击中靶的概率为0.7,求射击10炮,命中3炮的概率,至少命中3炮的概 率,最可能命中几炮 解:设为射击10炮命中的炮数,则B(100.7),命中3炮的概率为 PE=3}=C0.730.37=0.0090 至少命中3炮的概率,为1减去命中不到3炮的概率,为 P≥3}=1-P(5<3}=1-0.70.310-0.998 因np+p=10×0.7+0.7=7.7不是整数,因此最可能命中[77=7
文档格式:DOC 文档大小:345.5KB 文档页数:7
2.3逆矩阵 定义:对于Ann,若有Bn满足AB=BA=E,则称A为可逆矩阵, 且B为A的逆矩阵,记作A-1=B. 定理1若A为可逆矩阵,则A的逆矩阵唯一 证设B与C都是A的逆矩阵,则有
文档格式:PPT 文档大小:170.5KB 文档页数:36
拉氏变换的性质 本讲介绍拉氏变换的几个性质,它们在 拉氏变换的实际应用中都是很有用的. 为方便起见,假定在这些性质中,凡是要 求拉氏变换的函数都满足拉氏变换存在 定理中的条件,并且把这些函数的增长 指数都统一地取为c.在证明性质时不再 重述这些条件
文档格式:PPT 文档大小:359KB 文档页数:19
空间曲线及其方程 一、空间曲线的一般方程 空间曲线C可看作空间两曲面的交线 F(x,y,z)=0 G(x,y,z)=0 空间曲线的一般方程.特点:曲线上的点都满足方程,满足方程的点都在曲线上,不在曲线上的点 不能同时满足两个方程
文档格式:DOC 文档大小:408.5KB 文档页数:7
第四章向量组的线性相关性 4.1向量及其运算 1.向量:n个数a1,a2,an构成的有序数组,记作a=(a1,a2,an), 称为n维行向量 a称为向量a的第i个分量 a;∈R称a为实向量(下面主要讨论实向量) a∈C称a为复向量 零向量:θ=(0,0,…,0) 负向量:(-a)=(-a1,-a2,…,-an) 2.线性运算:a=(a1,a2,,an),B=(b1,b2,bn) 相等:若a1=b(i=1,2,,n),称a=B. 加法:a+B=(a1+b1,a2+b2,,an+bn) 数乘:ka=(ka1,ka2,,kan)
文档格式:DOC 文档大小:481KB 文档页数:12
第六章二次型 变量x1,x2,…,xn的二次齐次多项式 f(x1,x2,,xn)=a1x2+2a12x1x2+2a13x1x3+…+2anx1xn +a22x2+2a23x2x3+…+2a2nx2xn +amx 称为n元二次型,简称为二次型 a∈R:称f(x1,x2,…,xn)为实二次型(本章只讨论实二次型) a∈C:称f(x1,x2,…,xn)为复二次型 6.1二次型的矩阵表示 1.矩阵表示:令an=a(>i),则有
文档格式:DOC 文档大小:310.5KB 文档页数:7
第三章矩阵的初等变换 3.1矩阵的秩 1.子式:在An中,选取k行与k列,位于交叉处的k2个数按照原来的 相对位置构成k阶行列式,称为A的一个k阶子式,记作D 对于给定的k,不同的k阶子式总共有C个 2.矩阵的秩:在A中,若 (1)有某个r阶子式D,≠0; (2)所有的r+1阶子式D+1=0(如果有r+1阶子式的话) 称A的秩为r,记作 rankA=r,或者r(A)r.规定:rank
文档格式:PDF 文档大小:164.44KB 文档页数:5
一.(本题共40分)给定有理数域上的多项式f(x)=x4+3x2+3 1.(本题5分)证明f(x)为中的不可约多项式 2.(本题5分)设a是f(x)在复数域C内的一个根.定义 Qa]= {ao +aa+a2a2}. 证明:对于任意的g(x)∈x],有g(a)∈a];又对于任意的B,ya,有 Bry Qa 3.(本题5分)接上题.证明:若B∈Qa],B≠0,则存在∈a],使得y=1. 4.(本题15分)找出f(x)的一个sturm序列.判断f(x)有几个实根. 5.(本题10分)求下面三阶方阵在有理数域Q上的最小多项式:
文档格式:DOC 文档大小:245.5KB 文档页数:3
9-3实系数多项式根的分布 9.3.1复系数多项式的根的绝对值的上界 命题设f(x)=axn+a1xn+…+an∈C[x],其中a≠0而n≥1。令 a=max{ 则对f(x)的任一复根a,有|ak1+A/a 证明如果A=0,则a=0,命题成立。下面设A>0 如果|a1+A/a,那么,因为f(a)=0,故有 la Haa++aa a+…+an ≤A(ar-++1)=a(la--1)/(a-1) 现在|a>1,故从上式立刻得到 la a\ Ala\ /(al-1) 两边消去|a,得|ak1+A/a|,矛盾
首页上页631632633634635636637638下页末页
热门关键字
搜索一下,找到相关课件或文库资源 6893 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有