点击切换搜索课件文库搜索结果(990)
文档格式:DOC 文档大小:440KB 文档页数:5
前面讨论了参数的点估计,它是用样本算出的一个值去估计未知参数即点估计值仅仅 是未知参数的一个近似值,它没有给出这个近似值的误差范围 例如,在估计某湖泊中鱼的数量的问题中,若根据一个实际样本,利用最大似然估计法 估计出鱼的数量为50000条,这种估计结果使用起来把握不大实际上鱼的数量的真值可 能大于50000条,也可能小于50000条且可能偏差较大 若能给出一个估计区间,让我们能较大把握地(其程度可用概率来度量之)相信鱼的数量 的真值被含在这个区间内,这样的估计显然更有实用价值
文档格式:DOC 文档大小:499.5KB 文档页数:7
一、点估计的概念 设X1,X2,…,Xn是取自总体X的一个样本,x1,x,,xn是相应的一个样本值.日是总 n 体分布中的未知参数,为估计未知参数,需构造一个适当的统计量 (x1,x2,,n) 然后用其观察值 0(x1,x2,…xn) 来估计θ的值
文档格式:DOC 文档大小:526KB 文档页数:8
前面讨论了随机变量的分布函数,从中知道随机变量的分布函数能完整地描述随机变 量的统计规律性 但在许多实际问题中,人们并不需要去全面考察随机变量的变化情况,而只要知道它的 某些数字特征即可
文档格式:DOC 文档大小:552.5KB 文档页数:7
第三节协方差及相关系数 对多维随机变量,随机变量的数学期望和方差只反了各自的平均值与偏离程度,并 没能反映随机变量之间的关系.本节将要讨论的协方差是反映随机变量之间依赖关系的一 个数字特征
文档格式:DOC 文档大小:568KB 文档页数:6
随机变量的数学期望是对随机变量取值水平的综合评价,而随机变量取值的稳定性是 判断随机现象性质的另一个十分重要的指标
文档格式:DOC 文档大小:506KB 文档页数:5
在实际应用中,有些随机变量往往是两个或两个以上随机变量的函数例如,考虑全 国年龄在40岁以上的人群,用X和Y分别表示一个人的年龄和体重,Z表示这个人的血 压,并且已知Z与X,Y的函数关系式 Z=8(X,), 现希望通过(X,Y)的分布来确定Z的分布.此类问题就是我们将要讨论的两个随机向量函 数的分布问题 在本节中,我们重点讨论两种特殊的函数关系:
文档格式:DOC 文档大小:678KB 文档页数:8
在实际应用中,有些随机现象需要同时用两个或两个以上的随机变量来描述例如,研 究某地区学龄前儿童的发育情况时,就要同时抽查儿童的身高H、体重W,这里,H和W 是定义在同一个样本空间S={e}={某地区的全部学龄前儿童}上的两个随机变量.又如,考 察某次射击中弹着点的位置时,就要同时考察弹着点的横坐标X和纵坐标Y.在这种情况 下,我们不但要研究多个随机变量各自的统计规律,而且还要研究它们之间的统计相依关 系,因而还需考察它们的联合取值的统计规律,即多为随机变量的分布
文档格式:DOC 文档大小:417.5KB 文档页数:6
一、连续型随机变量及其概率密度 定义如果对随机变量X的分布函数F(x),存非负可积函数f(x)使得对于任意实数x有 F(x)=(X sx)= s()则称X为连续型随机变量,称f(x)为X的概率密度函数简称为概率密度或密度函数
文档格式:DOC 文档大小:242.5KB 文档页数:4
第二节离散型随机变量及其概率分布
文档格式:DOC 文档大小:462KB 文档页数:6
一、两个事件的独立性 定义若两事件A,B满足(AB)=P(A)P(B) (1)则称A,B独立,或称A,B相互独立注:当P(A)>0,P(B)>0时,A,B相互独立与A,B互不相容不能同时成立.但与S既相互独立又互不相容(自证)定理1设A,B是两事件,且P(A)>0,若AB相互独立,则(AB)=P(A).反之亦然定理2设事件A,B相互独立则下列各对事件也相互独立:A与B,A与B,A与B
首页上页6465666768697071下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有