点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:1.1MB 文档页数:10
通过冻干-煅烧合成了一氧化锰/石墨烯(MnO/rGO)复合材料,并将其用作锂离子电池负极材料.在500 mA·g-1的电流密度下,MnO/rGO复合材料表现出高达830 mAh·g-1的可逆容量,且在充放电循环160圈后,其可逆容量依然高达805 mAh·g-1.倍率测试结果显示,循环225圈后,在2.0 A·g-1的电流密度下,其可逆容量高达412 mAh·g-1.复合材料中的石墨烯在提高材料导电性的同时有效地缓解了一氧化锰充放电过程中的体积膨胀.通过对比容量-电压的微分分析,发现复合材料超出一氧化锰理论容量的部分是由形成了更高价态的锰引起的.MnO/rGO复合材料比纯一氧化锰(p-MnO)更容易出现高价态的锰,可能是因为rGO上残留的氧为电极反应提供了额外所需的氧源.该一氧化锰/石墨烯复合材料因其简单绿色的合成过程及优异的电化学性质,有望在未来的锂电负极中得到广泛的实际应用
文档格式:PDF 文档大小:457.11KB 文档页数:5
将喷涂法应用于制备染料敏化太阳能电池光阳极,具有浆料制备简单、易操作、成本低廉等优势.本文以钛酸丁酯和P25为原料配制浆料,采用喷涂法制备二氧化钛薄膜,选择乙二醇作为造孔剂,探索了乙二醇的最佳加入量.通过对电池I-V曲线,二氧化钛薄膜表面粗糙度、染料吸附量和漫反射谱,以及光阳极的扫描电镜照片和交流阻抗图谱的分析,得到如下结果:当乙二醇与钛酸丁酯的体积比为1:1时,二氧化钛薄膜的粗糙度最大,即孔隙率和比表面积最大,因此染料吸附量达到1.47×10-7mol·cm-2,电池性能最好,其中开路电压为0.69 V,短路电流为13.0 mA·cm-2,光电转化效率达到5.38%,比不加造孔剂时增加了将近1倍,此时电子的扩散转移电阻也最小
文档格式:PPT 文档大小:7.75MB 文档页数:304
第1章 电力电子器件 1.1电力电子器件概述 1.2 不可控器件——电力二极管 1.3半控型器件——晶闸管 1.4典型全控型器件 1.5其他新兴电力电子器件 1.6电力电子器件的驱动 1.7电力电子器件的保护 1.8电力电子器件的串联和并联使用 第2章 整流电路及触发器 2.1 单相可控整流电路 2.2 三相可控整流电路 2.3 变压器漏感对整流电路的影响 2.4 电容滤波不可控整流电路 2.6 大功率可控整流电路 2.7 整流电路的有源逆变工作状态 2.8 晶闸管直流电动机系统 2.9 相控电路的驱动控制 第3章 直流斩波电路 3.1 基本斩波电路 3.2 复合斩波电路和多相多重斩 波电路 第4章 交流电力控制电路和交交变频电路 4.1 交流调压电路 4.2 其他交流电力控制电路 4.3 交交变频电路 4.4 矩阵式变频电路 第5章 逆变电路 5.1 换流方式 5.2 电压型逆变电路 5.3 电流行逆变电路 5.4 多重逆变电路和多电平逆变电
文档格式:PDF 文档大小:5.32MB 文档页数:7
以氧化铝溶胶为黏结剂、金属Fe为烧结助剂, 采用冷压-烧结制备出铝电解用Fe-TiB2/Al2O3复合阴极材料, 利用20A电解试验研究其电解性能; 利用能谱仪(EDS) 对电解试验前后的复合阴极材料进行了成分物相分析, 研究电解过程中各种元素迁移行为.研究结果表明: 金属Fe作为烧结助剂在烧结过程中能有效的填充骨料之间的空隙, 使该复合阴极材料的烧结致密度显著提高; 20 A电解试验过程电压稳定, 电流效率93. 2%, 原铝中铝元素质量分数为99. 47%, 杂质元素质量分数为0. 53%.在电解试验后, 铝液能有效润湿阴极表面, 表明Fe-TiB2/Al2O3复合阴极材料具有较理想的可润湿性; 从复合阴极电解后的能谱分析可知, 在电解过程中, 碱金属主要是通过液态电解质渗透进入阴极材料中, 随后又逐渐渗透进入黏结剂相中, 并在骨料之间氧化铝溶胶和金属烧结助剂均未能充分填充的空隙进行富集. K元素较Na元素对黏结相的渗透力更强; 与此同时, 阴极表面生成的Al通过复合材料的空隙进入阴极内部, 而Fe金属会利用材料内部的空隙反向扩散至铝液层中.在试验中, 阴极表面的铝液层的稳定存在是该阴极高效稳定运行的基础
文档格式:PDF 文档大小:9.35MB 文档页数:9
为获得一种锌电积用低成本、低析氧电位和高催化活性的阳极,在铝棒表面通过挤压复合技术包覆Pb-0.2% Ag合金得到Al棒Pb-0.2% Ag阳极.在含氟的硫酸溶液中,通过阳极氧化在Pb-0.2% Ag合金和Al棒Pb-0.2% Ag合金阳极表面形成具有高催化性能的膜层,采用显微图像分析仪和数显显微硬度计表征了膜层的厚度及硬度,并通过电子拉伸试验对比了两种阳极的极限抗拉强度.采用X射线衍射、扫描电子显微镜、循环伏安法、阳极极化和交流阻抗法等技术手段研究了Al棒Pb-0.2% Ag与Pb-0.2% Ag阳极表面氧化膜层的物相、形貌以及电化学性能.结果表明:Al棒Pb-0.2% Ag阳极相比Pb-0.2% Ag阳极表面易生成致密较厚的氧化膜层,且膜层硬度提升了41.64%,其氧化膜层主要物相均为电催化活性良好的β-PbO2.新型阳极的极限抗拉强度是传统阳极的1.3倍,大大改善了阳极材料的机械性能.阳极极化曲线数据显示Al棒Pb-0.2% Ag/PbO2阳极在电积锌体系中具有较低的析氧电位(1.35 V vs MSE,500 A·m-2)和较高的交换电流密度(7.079×10-5 A·m-2).循环伏安曲线和交流阻抗数据显示Al棒Pb-0.2% Ag/PbO2阳极具有较高的电催化活性、较大的表面粗糙度和较小的电荷传质电阻.在电积锌实验中,栅栏型Al棒Pb-0.2% Ag/PbO2阳极相比传统Pb-0.2% Ag阳极平均槽电压下降了75 mV,而且大大减少了阳极泥的产生
文档格式:PDF 文档大小:823.54KB 文档页数:8
电动汽车以零污染、零排放等优点成为新能源汽车中最具有发展潜力的对象,锂离子电池作为其动力来源,科学准确地预测其剩余使用寿命是决定电动汽车性能的重要因素。本文研究等效循环电池组在等效循环工况、不同循环次数时,锂离子电池电压随着放电时间的变化曲线。通过分析不同循环次数下导函数在等效特征点处的斜率变化规律,建立锂离子电池等效循环工况下的寿命退化曲线。选取NASA等效循环电池组和自测JZ等效循环电池组,将放电初期和放电后期曲线与特定斜率直线交点作为等效循环寿命预测的等效特征点,根据这两组特征点分别建立退化模型Mini和Mlat。最后选取等效循环电池组内的其他电池进行锂离子电池等效循环寿命预测的验证。通过锂离子电池测试数据集验证其预测精度较高,稳定性较好,具有较强的应用价值
文档格式:PDF 文档大小:1.22MB 文档页数:9
离子交换树脂(Ionomer)是质子交换膜燃料电池催化层的重要组成部分,它在催化层中的主要作用是作为质子传导相传导质子。本文采用旋转圆盘电极法(RDE),在模拟燃料电池真实的运行环境(模式一)和模拟燃料电池启停环境(模式二)两种模式下,研究了Ionomer对铂碳催化剂电压循环耐久性的影响。通过相同位置透射电镜分析法(IL-TEM),分析了铂碳催化剂经历模式二耐久性测试后的结构变化。研究发现Ionomer的存在可以提高铂碳催化剂的耐久性。在模式一的测试中:添加Ionomer后,其氧还原半波电位下降值?E从23 mV下降至11 mV;没有发生碳的腐蚀,Pt颗粒的长大是催化剂性能下降的主要原因;Ionomer的存在延缓了Pt电化学比表面积(ECSA)的降低从而有利于保持Pt的活性。在模式二的测试中:添加Ionomer后,其氧还原半波电位下降值?E从25 mV下降至5 mV,除了铂颗粒长大外还发生了载体碳的腐蚀;Ionomer的存在同样可以保持Pt的活性;IL-TEM分析可以看到明显的铂颗粒长大和碳腐蚀,碳载体的腐蚀造成铂的严重流失和团聚。含Nafion的催化剂中铂颗粒平均粒径从2.7 nm增加到了3.76 nm,不含Nafion的催化剂中的铂颗粒平均粒径从2.44 nm增加到了4.19 nm
文档格式:PDF 文档大小:11.39MB 文档页数:10
针对传统熔融沉积成型面临的成型精度低和打印材料受限, 基于电流体动力熔融沉积在成形高度、材料种类、基板导电性和平整性、3D成形能力等方面的不足和局限性, 本研究提出一种电场驱动熔融喷射沉积3D打印新工艺, 其采用双加热集成式喷头并施加单极脉冲高电压(单电势), 利用电场驱动微量热熔融材料喷射并精准沉积来形成高分辨率结构.引入两种新的打印模式: 脉冲锥射流模式和连续锥射流模式, 拓展了可供打印材料的种类和范围.通过理论分析、数值模拟和实验研究, 揭示了所提出工艺的成形机理、作用机制以及成形规律.利用提出的电场驱动熔融喷射沉积3D打印方法, 结合优化工艺参数, 完成了三个典型工程案例, 即大尺寸微尺度模具、大高宽比微结构、宏微跨尺度组织支架和网格三维结构.其中采用内径250 μm喷头, 打印出最小线宽4 μm线栅结构, 高宽比达到25:1薄壁圆环微结构.结果表明, 电场驱动熔融喷射沉积高分辨率3D打印具有打印分辨率高、材料普适性广、宏/微跨尺度的突出优势, 为实现低成本、高分辨率熔融沉积3D打印提供了一种全新的解决方案
文档格式:PDF 文档大小:3.78MB 文档页数:75
第一节 单侧电源网络相间短路的电流保护 第二节 电网相间短路的方向性电流保护 第三节 中性点直接接地电网中接地短路的零序电流及方向保护 第四节 中性点非直接接地电网中单相接地故障的零序电压、电流及方向保护
文档格式:PDF 文档大小:1.19MB 文档页数:25
7.1电力变压器的故障类型、不正常运行状态及其相应的保护方式 7.2变压器的纵差动保护 7.3变压器的瓦斯保护 7.4变压器的电流和电压保护
首页上页6667686970717273下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有