点击切换搜索课件文库搜索结果(850)
文档格式:DOC 文档大小:242.5KB 文档页数:5
第六章6-4四维时空空间与辛空间 在狭义相对论中,用三个空间坐标和一个时间坐标来刻画一个物体的运动,称为四维时 空空间 在R上规定一个特殊的度量f(a,B)=x1y1+x2y2+x3y3-x4y4(其中a=( x1,x2,x3,x4),B=(y1,y2,y3,y4),称为四维时空空间的度量 令 1000 0100 I= 0010 L000-1 在R内取定基
文档格式:PPT 文档大小:483KB 文档页数:17
定积分的分部积分法 一、分部积分公式 定积分也可以象不定积分一样进行分部积分, 设函数u(x)、v(x)在区间[a,b]上具有连续导数,则 有udv=[-rvdu 定积分的分部积分公式
文档格式:PPT 文档大小:727KB 文档页数:22
定积分的性质 一、基本内容 对定积分的补充规定: b, (1)当a=b时,f(x)dx=0 (2)当a>b时,f(x)dx=-f(x)dx. 说明在下面的性质中,假定定积分都存 在,且不考虑积分上下限的大小
文档格式:PPT 文档大小:422KB 文档页数:20
曲率 前面讲了单调性、极值、最值、凹凸性。 我们知道凹凸性反映的是曲线的弯曲方向,但是朝同一方向弯曲的两条曲线,其弯曲的程度也不尽相同。曲率就是表征弯曲程度的量,它等于单位路程上方向(角度切线的倾斜角 )的改变量
文档格式:PPT 文档大小:252KB 文档页数:12
一、定义 定义2.11. 两个成射影对应的重叠的一维基本形中, 若对任意一 个元素, 无论把它看着属于第一基本形的元素或是第二基本形的 元素, 其对应元素相同, 则称这种非恒同的射影变换为一个对合. 定义2.11'. 设f 为一维基本形[π]上的一个非恒同的射影变换. 若 对任意的x∈[π], 都有f(x)=f –1 (x), 则f 称为[π]上的一个对合. 注 (1). 对合非恒同
文档格式:PPT 文档大小:719.5KB 文档页数:43
中值定理 第二章我们讨论了微分法,解决了曲线的切线、 法线及有关变化率问题。这一章我们来讨论导数的 应用问题。 我们知道,函数y=f(x)在区间 上的增量4y=f(xo+x)-f(x)可用它的微分 dy=f(x)4x来近似计算其误差是比x 高阶的无穷小
文档格式:DOC 文档大小:50.5KB 文档页数:2
定理7设A是n维线性空间V的一个线性变换A的矩阵可以在某一基下为 对角矩阵的充要条件是A有n个线性无关的特征向量. 定理8属于不同特征值的特征向量是线性无关的 推论1如果在n维线性空间V中,线性变换的特征多项式在数域P中有n 个不同的根,即A有n个不同的特征值,那么A某组基下的矩阵是对角形的 推论2在复数上的线性空间中,如果线性变换A的特征多项式没有重根
文档格式:PPT 文档大小:374.5KB 文档页数:18
对于行数和列数较高的矩阵 ,为了 简化运算,经常采用分块法,使大矩阵的 运算化成小矩阵的运算. 具体做法是:将 矩阵 用若干条纵线和横线分成许多个小 矩阵,每一个小矩阵称为 的子块,以子 块为元素的形式上的矩阵称为分块矩阵
文档格式:PPT 文档大小:1.22MB 文档页数:8
定义: 设P是一个数域,元是一个文字,P是多项式环, 若矩阵A的元素是的多项式,即P2的元素,则 称A为九一矩阵,并把A写成A(4 注: ①∵PcPI孔],∴数域P上的矩阵一数字矩阵也 是一矩阵
文档格式:DOC 文档大小:60KB 文档页数:1
设P是数域,是一个文字,作多项式环P[],一个矩阵如果它的元素是 的多项式,即P[]的元素,就称为-矩阵.在这一章讨论矩阵的一些性质, 并用这些性质来证明上一章第八节中关于若当标准形的主要定理 因为数域P中的数也是P]的元素,所以在矩阵中也包括以数为元素的 矩阵.为了与λ-矩阵相区别,把以数域P中的数为元素的矩阵称为数字矩阵.以
首页上页6667686970717273下页末页
热门关键字
搜索一下,找到相关课件或文库资源 850 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有