点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:1.4MB 文档页数:97
2.1逻辑代数的三种基本运算 2.2逻辑代数的基本定律和规则 2.3复合逻辑 2.4逻辑函数的两种标准形式 2.5逻辑函数的代数化简法 2.6逻辑函数的卡诺图化简 2.7非完全描述逻辑函数的化简
文档格式:DOC 文档大小:245KB 文档页数:3
第十二章张量积与外代数 12-1多重线性映射 12.1.1线性空间的一组基的对偶基的定义 定义12.1对偶空间 设v是k上n维线性空间,E2,Sn是的一组基,则线性函数 f:V→K(K为数域)被f在此组基下的映射法则决定,即f()f(2)f(n)已给 定。现设V内全体线性函数组成的集合为V,则在V内定义加法与数乘如下: (i)f,,+)(a)= f(a)+g(a); (iif EV', k K, f )(a)= (a). 则V关于上述加法、数乘组成K上的线性空间,称为V的对偶空间,记作o(V,K 定义12.2对偶基 假设同定义12.1,定义V内n个线性函数
文档格式:DOC 文档大小:154KB 文档页数:2
9-2C,R,Q上多项式的因式分解 9.2.1复数域、实数域上多项式的因式分解 定理(高等代数基本定理)复数域C上任意一个次数≥1的多项式在C内必有一个 根。 这个定理的证明是放在复变函数课程中完成的。 由高等代数基本定理,我们得到C[x]内多项式的因式分解的重要结论: 命题C[x]内一个次数≥1的多项式p(x)是不可约多项式的充分必要条件为它是一次 多项式。 证明在任一数域K上的一次多项式f(x)都是K[x]内的不可约多项式(因为 (f(x),f(x)=1)。现在假设p(x)是C[x]内的一个不可约多项式
文档格式:PDF 文档大小:165.38KB 文档页数:6
教学目的本节继前面两节之后,从另一侧面继续介绍与一般集相关的基 础知识.本节给出几种在测度论中常见集类介绍了本节集类的知识后将可 以有效简化测度论若干定理的证明 本节要点本节介绍了在测度论常见的几种集类,如环代数和-代数等 本节介绍的集类较多,应注意理清各个集类之间的相互关系与σ代数相关 的概念及其应用是本节的重点
文档格式:PPT 文档大小:659.5KB 文档页数:34
本章首先介绍数字信号、数字技术和数字系统等基本概念,然后介绍计算机中各种进制数的表示方法,最后介绍逻辑代数的基本概念、公式和定理,逻辑函数的代数化简法和卡诺图化简法。逻辑代数是分析及设计数字电路的基本工具,逻辑函数化简是数字电路分析及设计的基础
文档格式:PPT 文档大小:13.87MB 文档页数:425
线性代数( inear algebra)是代数学的一个分支,“代数 这一个词在我国出现较晚,在清代时才传入中国,当时被人们 译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻 译家李善兰才将它翻译成为“代数学”,一直沿用至今
文档格式:PDF 文档大小:96.1KB 文档页数:18
上一章多重积分中,面积和体积微元是有方向性的,即与坐标顺序有关,但表达式 dxdy等并不反映它的方向性.在作变量替换时dxdh=(x,y 要出现一个 Jacobi行 a(,v) 列式,这显然也不能从通常的实数乘法推导出来这一章我们将用 Grassmann代数工具将这 乘法讲清楚.事实上面积微元dxdy应该用 grassmann代数中乘法(外积)来定义d?dy, 这样既解决了方向性问题:
文档格式:PDF 文档大小:74.35KB 文档页数:11
16.1半群与独异点 一、半群、独异点的定义与性质 二、半群与独异点定义 三、半群与独异点性质 四、半群、独异点的子代数、积代数、商代数
文档格式:PDF 文档大小:1.6MB 文档页数:51
1.1 集合 1.2 映射与变换 1.3 代数运算 1.4 运算律 1.5 同态与同构 1.6 等价关系与集合的分类
文档格式:PDF 文档大小:8.55MB 文档页数:606
本书共分五章,前两章给出群论方面的题解422个,后三章给出环与域方面的题解394个。这些题目大体上包括了通行的近世代数的内容。当然,也有少数题目稍深人一些,其中也吸收了作者在群、环、域方面所发表的一些论文成果。 第一章 群 第二章 儿类特殊的群和子群 第三章 环和域 第四章 几类特殊的环 第五章 域的扩张
首页上页4567891011下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有