点击切换搜索课件文库搜索结果(433)
文档格式:PDF 文档大小:489.65KB 文档页数:4
利用铜模浇铸法制备了Mg60Cu30-xY10Six(x=0,1.0,1.8,2.5,5.0)合金.结果表明,当x=1.0时,合金具有最大的玻璃形成能力,并且其显微硬度和断裂韧性比Mg60Cu30Y10合金也有明显改善.与Mg60Cu30Y10合金比较,Mg60Cu29Y10Si1合金过冷液相区宽度ΔTx值减少,但约化玻璃转变温度Trg值略有增加
文档格式:PDF 文档大小:837.24KB 文档页数:5
建立了乳化炸药实验室制备工艺,并自制了玻璃微球敏化的乳化炸药试样.通过对试样的爆速测试,研究了乳化炸药爆速与其密度及玻璃微球含量等因素的关系,分析了这种工业炸药爆速的特点.结果表明:这种乳化炸药的爆速随其密度的增大而增大到最大值后逐渐降低,直到被压死
文档格式:PDF 文档大小:689.73KB 文档页数:6
现代电子封装迫切需要开发新型高导热陶瓷(玻璃)基复合材料.本文在对镀钛金刚石进行镀铜和控制氧化的基础上,利用放电等离子烧结方法制备了金刚石增强玻璃基复合材料,并观察了其微观形貌和界面结合情况,测定了复合材料的热导率和热膨胀系数.实验结果表明:复合材料微观组织均匀,Ti/金刚石界面是复合材料中结合最弱的界面,复合材料的热导率随着金刚石粒径和含量的增大而增加,而热膨胀系数随着金刚石含量的增加而降低.当金刚石粒径为100 μm、体积分数为70%时,复合材料热导率最高达到了40.2 W·m-1·K-1,热膨胀系数为3.3×10-6K-1,满足电子封装材料的要求
文档格式:PDF 文档大小:566.7KB 文档页数:4
采用有限元方法计算了点接式玻璃幕墙在风荷载作用下的应力场,并讨论了其特性,得到了玻璃板的最大挠度计算公式.计算结果与实验结果一致
文档格式:PPT 文档大小:225.5KB 文档页数:1
T采用双平行玻璃板光学测微器,当光线不垂直于双平 玻璃板,光线产生的平移量Δ。利用测微螺旋使双平行 璃板作相向运动,直至重合(即对径分划线重合),分 线的移动量为对径分划线之间角距的一半,这个量可由 微器分划盘上上读取,正确的量应为两次读数之和
文档格式:PPT 文档大小:1.72MB 文档页数:28
北京工业大学:《新型玻璃与陶瓷材料》课程教学资源(PPT课件)第一讲 典型玻璃结构理论和典型玻璃
文档格式:PDF 文档大小:322.64KB 文档页数:4
利用正交实验设计方法,进行了利用冶炼渣回收铁及生产微晶玻璃建材制品的实验室研究.探讨了不同原料配比时渣铁分离的效果.通过光学显微镜、X射线衍射分析、物理化学性能测试等手段确定了微晶玻璃试样的物相组成及性能特征.提出了可供工业实验的原料配比及工艺制度
文档格式:PDF 文档大小:10.93MB 文档页数:10
应用X射线衍射仪、偏光显微镜和扫描电镜对水淬和空冷低钛高炉渣的矿相组成、显微结构、TiO2分布规律及其差异性进行研究.结果表明:水淬渣和空冷渣中主要矿物组成均为玻璃质、钙钛矿、钙铝黄长石和镁硅钙石,但是两种炉渣中各矿物组分含量相差较大,空冷渣中钙铝黄长石和钙钛矿的平均体积分数分别为62.5%和12.5%,是水淬渣中钙铝黄长石和钙钛矿的2.27倍和1.92倍,而玻璃质的平均体积分数不足水淬渣的1/3.水淬渣和空冷渣中矿相显微结构差异较大,空冷渣中钙铝黄长石为钉齿状,而水淬渣中钙铝黄长石为呈羽毛状和针状,且结晶粒度较小,钙钛矿在水淬渣和空冷渣中分别呈星点状和树枝状分布,两种炉渣中镁硅钙石都为纺锤体形;水淬渣中TiO2主要分布在钙钛矿、玻璃质和钙铝黄长石中,而空冷渣中TiO2主要分布在钙钛矿和钙铝黄长石中,并且空冷渣中钙钛矿TiO2的分布率比水淬渣高8.41%,空冷方式更有利于将TiO2聚集在钙钛矿中
文档格式:PDF 文档大小:342.58KB 文档页数:5
以环氧树脂为基体材料,填充大量空心玻璃微珠制备密度低、强度高的固体浮力材料.通过研究不同的固化体系,筛选出最佳固化剂间苯二胺(MPD)、4,4'-二氨基二苯砜(DDS).对空心玻璃微珠进行表面改性处理,提高和聚合物的相容性,从而增加掺加量.通过系统优化试验,获得了密度0.61~0.75g℃ m-3,压缩强度40~68.96MPa,且吸水率很低的深海安全浮力材料
文档格式:PDF 文档大小:741.18KB 文档页数:4
利用射流成型法制备出Zr52.5Cu17.9Ni14.6Al10Ti5大块非晶.该合金系统具有很强的玻璃形成能力和宽的过冷区,其玻璃转化温度Tg=650.63K,晶化温度Tx=721.90K,过冷区△Tx=Tx-Tg=71.27K.Vicker硬度为558kg/mm2压缩断裂强度1730GPa,弹性模量82GPa.观察其断口有大量纹络状河流花样,并有融化的液滴存在.该合金系统大的玻璃形成能力应归功于合金组元的多样性、组元间大的原子半径比率、组元间大的混合负热及在冷却过程中过冷区粘度的急剧上升等因素
首页上页4567891011下页末页
热门关键字
搜索一下,找到相关课件或文库资源 433 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有