点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:148.57KB 文档页数:4
教学目的 本节介绍积分的一些基本性质, 包括积分的线性性质, 积分 的不等式性质和积分的绝对连续性等. 这些性质都没有涉及到积分号下取极 限的问题, 积分取极限的性质讲在下一节介绍. 本节要点 一般测度空间上的积分,除了具有一些与经典积分类似的性 质外,还具有一些新的性质.应注意比较.学习本节的内容, 除了应了解积分的 基本性质外, 还应注意掌握一些基本的证明技巧
文档格式:PDF 文档大小:160.74KB 文档页数:5
教学目的 本节将考察欧氏空间上的可测函数和连续函数关系. 本节将 证明重要的 Lusin 定理, 它表明 Lebesgue 可测函数可以用性质较好连续函数 逼近. 这个结果在有些情况下是很有用的. 本节要点 一方面, L 可测集上的连续函数是可测的, 另一方面, Lusin 定 理表明, Lebesgue 可测函数可以用连续函数逼近. Lusin 定理有两个等价形 式. 另外, 作为准备定理的 Tietze 扩张定理本身也是一个很有用的结果
文档格式:PDF 文档大小:180.12KB 文档页数:6
教学目的 可测函数列可以定义各种收敛性. 本节讨论几乎处处收敛, 依测度收敛和几乎一致收敛. 几种收敛性之间存在一些蕴涵关系. 通过本节 的学习, 可以使学生对可测函数列的几种收敛性和相互关系有一个较全面的 了解
文档格式:PDF 文档大小:82.69KB 文档页数:1
本课程是为数学系本科高年级学生开设的. 本课程讲述一般空间上的测度论的基础知 识和欧氏空间 n R 上的 Lebesgue 测度与积分理论. 现代数学的许多分支如概率论, 泛函分析, 群上调和分析等越来越多的用到一般空间 上的测度理论. 对数学专业的学生而言, 掌握一般空间上的测度论的基础知识, 已经变得越 来越重要. 因此本课程将一般空间上的测度论和 n R 上的 Lebesgue 积分结合起来讲述
文档格式:PDF 文档大小:177.36KB 文档页数:6
教学目的 集合论是本课程的基础. 本节将引入集的概念与集的运 算, 使学生掌握集和集的运算的基本概念. 本节要点 De Morgan公式是以后常用的公式. 证明两个集的相等是 经常要遇到论证, 应通过例子使学生掌握其基本方法.集列的极限是一种 新型的极限, 学生应注意理解其概念
文档格式:PDF 文档大小:166.7KB 文档页数:5
教学目的 本节介绍有界变差函数的性质.证明有界变差函数的 Jordan 分解定理. 教学要点 有界变差函数的概念, 变差函数的性质, Jordan 分解定理
文档格式:PDF 文档大小:193.49KB 文档页数:7
在数学分析课程中我们知道, 微分与积分具有密切的联系. 一方面, 若 f (x) 在[a,b] 上连续, 则对任意 x ∈[a,b] 成立 f (t)dt f (x). x
文档格式:PPT 文档大小:57.5KB 文档页数:5
一、金属指示剂(metallochromic indicator)的变色原理配位滴定时,滴定前在金属离子溶液中加入金属指示剂,先发生下列变化:
文档格式:PDF 文档大小:224.49KB 文档页数:10
教学目的 本节讨论测度空间的乘积空间,并且证明一个重要的定理 —Fubini 定理. 本节要点 乘积测度的构造利用了§2.2 测度的延拓定理. Fubini 定理是 积分理论的基本定理之一,它是关于二元函数的二重积分,累次积分交换积 分顺序的定理.Fubini 定理在理论推导和计算积分方面有广泛的应用
文档格式:PDF 文档大小:177.3KB 文档页数:6
教学目的 本节讨论直线上的 Riemann 积分(包括广义 Riemann 积分) 与 Lebesgue 积分之间的关系.同时给出 Riemann 可积函数的一个判别条件. 本节要点 用测度理论可以给出函数 Riemann 可积的一个简明的充要条 件. 本节的主要结果表明 Lebesgue 积分是 Riemann 积分的推广. 利用 Lebesgue 积分的性质, 可以解决一些 Riemann 积分的问题
首页上页6768697071727374下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有