点击切换搜索课件文库搜索结果(2442)
文档格式:DOC 文档大小:57KB 文档页数:2
第三章3-2n阶方阵的行列式(续) 3.2.5行列式的按任意列展开和特殊矩阵的行列式 1、行列式的按任意行(列)展开 定义命A=(-1)M,称为a的代数余子式 = 命题按行列式的第i行展开,有 证明将第i行先后与第i-1,i-2,…,1行交换,再展开。 推论行列式按第j行展开,有a=a 2、范德蒙行列式 形如 111 |= a1a2…an an 的行列式称为范德蒙行列式
文档格式:DOC 文档大小:51.5KB 文档页数:1
准对角矩阵称为 Jordan形矩阵,而主对角线上的小块方阵J称为 Jordan块 定理设A是数域K上的n维线性空间V上的线性变换.如果A的特征值全属于K, 则A在V的某组基下的矩阵为 Jordan形,并且在不计 Jordan块的意义下 Jordan形是唯 一的. 证明:对n作数学归纳法
文档格式:DOC 文档大小:185.5KB 文档页数:3
一、写出下列化合物的构造式 1.a-呋喃甲醇 2.a二甲基噻吩 3.溴化N,N-二甲基四氢吡咯 4.2-甲基5乙烯基吡啶
文档格式:PPT 文档大小:302.5KB 文档页数:7
一、问题的提出 从码间串扰的表示式可以看出,只要 anrl(k-n)T+t=0 n≠k 即可消除码间串扰
文档格式:DOC 文档大小:560.5KB 文档页数:7
9.2.2Qx]内多项式的因式分解 定义9.12定义Z[x]={axn+a1x+…+∈Z,i=01n}。 假设f(x)∈Z[x],f(x)≠0及±1。如果g(x)h(x)∈[x],使得f(x)=g(x)h(x), 且g(x)≠±1,h(x)≠±1,则称f(x)在Z[x]内可约,否则称f(x)在Z[x]内不可约 定义9.13设 f(x)=ax+axn+…+an∈Z[x], 这里n≥1。如果(aa1an)=1,则称f(x)是一个本原多项式。 命题Q[x]内一个非零多项式f(x)可以表成一个有理数k和一个本原多项式f(x)的
文档格式:PPT 文档大小:248.5KB 文档页数:14
一、循环码的原理 1、循环码的特性 (1)循环码是一种重要的线性分组码,易于实现,性能较好。 (2)循环码除具有线性码的一般性质外,还具有循环性,即循环码中任一码组循环一位以后,仍为该码中的一个码组。只关心其系数,而 2、码多项式的按模运算不关心x的取值。一长为n的码组可表示成码多项式n-1
文档格式:PDF 文档大小:134.23KB 文档页数:5
一.(本题20分)设K为数域.给定K4的两个子空间 M={(x1,2,3,4)|21-x2+4x3-3x4=0,x1+x3-x4=0 N={1,x2,x3,4)3x1+x2+x3=0,7x1+7x3-3x4=0} 求子空间MN和M+N的维数和一组基 二(本题10分)在K4内给定 a1=(1,-1,1,1),a2=(2,-2,0,1). 令M=L(a1,a2).试求商空间K4/M的维数和一组基 三.(本题20分)给定数域K上的3阶方阵 1-11 A=24-2 3-35 1.求K上的3阶可逆方阵T,使T-1AT为对角矩阵 2.对于任意正整数m,求Am
文档格式:DOC 文档大小:260.5KB 文档页数:6
目的:对于实对称矩阵A(A=A),求正交矩阵Q(QQ=E), 使得QAQ=A.此时,称A正交相似于对角矩阵A 1.实对称矩阵的特征值与特征向量的性质 定理6a=A→∈R. 证设Ax=x(x≠0),x=(51,52,5n),则有 x=5+2++n>0
文档格式:DOC 文档大小:260.5KB 文档页数:6
§2 n 阶行列式的性质及计算 §3 卡莱姆法则
文档格式:DOC 文档大小:63.5KB 文档页数:5
8-1画出1个顶点、2个顶点、3个顶点、4个顶点和5个顶点的无向完全图。试证 明在n个顶点的无向完全图中,边的条数为m(n1)2。 8-2右边的有向图是强连通的吗?请列出所有的简单路径 8-3给出右图的邻接矩阵、邻接表和邻接多重表表示。 84用邻接矩阵表示图时,若图中有1000个顶点,1000条C○ 边,则形成的邻接矩阵有多少矩阵元素?有多少非零元素?是否稀疏矩阵 【解答】一个图中有1000个顶点,其邻接矩阵中的矩阵元素有10002=1000000个。它
首页上页6970717273747576下页末页
热门关键字
搜索一下,找到相关课件或文库资源 2442 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有