点击切换搜索课件文库搜索结果(1189)
文档格式:DOC 文档大小:101KB 文档页数:2
根据哈密尔顿一凯莱定理,任给数域P上一个级矩阵A,总可以找到数域 P上一个多项式f(x),使f(A)=0.如果多项式f(x)使f(A)=0,就称f(x)以A 为根当然,以为A根的多项式是很多的,其中次数最低的首项系数为1的以A为 根的多项式称为A的最小多项式这一节讨论应用最小多项式来判断一个矩阵能 否对角化的问题
文档格式:DOC 文档大小:146.5KB 文档页数:3
对于给定的n维线性空间V,A∈L(V),如何才能选到V的一个基使关于 这个基的矩阵具有尽可能简单的形式由于一个线性变换关于不同基的矩阵是相 似的因而问题也可以这样提出在一切彼此相似的n阶矩阵中如何选出一个形 式尽可能简单的矩阵这一节介绍不变子空间的概念,来说明线性变换的矩阵的 化简与线性变换的内在联系
文档格式:DOC 文档大小:50.5KB 文档页数:2
定理7设A是n维线性空间V的一个线性变换A的矩阵可以在某一基下为 对角矩阵的充要条件是A有n个线性无关的特征向量. 定理8属于不同特征值的特征向量是线性无关的 推论1如果在n维线性空间V中,线性变换的特征多项式在数域P中有n 个不同的根,即A有n个不同的特征值,那么A某组基下的矩阵是对角形的 推论2在复数上的线性空间中,如果线性变换A的特征多项式没有重根
文档格式:DOC 文档大小:182.5KB 文档页数:4
一、线性变换的乘法 设A,B是线性空间V的两个线性变换,定义它们的乘积为 (AB)(a)=A,B(a))(a∈V) 则线性变换的乘积也是线性变换 线性变换的乘法适合结合律,即 (AB)C=(BC)
文档格式:DOC 文档大小:126KB 文档页数:3
一、线性变换的定义 线性空间V到自身的映射称为V的一个变换 定义1线性空间V的一个变换A称为线性变换,如果对于V中任意的元 素a,和数域P中任意数k,都有 A(a+B)=(a)+A(B);
文档格式:DOC 文档大小:61KB 文档页数:1
定义 9 设 1 2 V ,V 是线性空间 V 的子空间,如果和 V1+V2 中每个向量  的分 解式
文档格式:DOC 文档大小:84.5KB 文档页数:2
一、线性子空间的概念 定义 7 数域 P 上的线性空间 V 的一个非空子集合 W 称为 V 的一个线性子空 间(或简称子空间),如果 W 对于 V 的两种运算也构成数域 P 上的线性空间
文档格式:DOC 文档大小:116.5KB 文档页数:3
一、向量的线性相关与线性无关 定义 2 设 V 是数域 P 上的一个线性空间
文档格式:DOC 文档大小:218.5KB 文档页数:4
一、集合 集合是数学中最基本的概念之一,所谓集合就是指作为整体看的一堆东西
文档格式:DOC 文档大小:63.5KB 文档页数:3
经过非退化线性替换,二次型的矩阵变成一个与之合同的矩阵.由第四章§4 定理 4,合同的矩阵有相同的秩,这就是说,经过非退化线性替换后,二次型矩 阵的秩是不变的.标准形的矩阵是对角矩阵,而对角矩阵的秩就等于它对角线上 不为零的平方项的个数
首页上页7374757677787980下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1189 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有