where f:R\×Rn×R→ R\ and g:R\×R\×R→ R are continuous functions. Assume that f, g are continuously differentiable with respect to their first two arguments in a neigborhood of the trajectory co(t), yo(t), and that the derivative
with x(0)=I exist and are unique on the time interval t E [ 0, 1] for allTER\.Then discrete time system(4. 1)with f(5)=r(, i)describes the evolution of continuous time system(4.)at discrete time samples. In particular, if a is continuous then so is f Let us call a point in the closure of X locally attractive for system(4. 1)if there exists