I Let L= 1.25 H in Fig. 6-11, and determine v(t)if v(0) 1(02)=20A L 0.05F ig 6-11 For prob. I 2(a)What value of L in the circuit of Fig 6-11 will result in a transient response of the form, v(t)
Proof Existence and uniqueness of r(t, u)and A(t)follow from Theorem 3. 1. Hence, in order to prove differentiability and the formula for the derivative, it is sufficient to show that there exist a function C: R++R+ such that C(r)/r-0 as r-0 and E>0 such
where f:R\×Rn×R→ R\ and g:R\×R\×R→ R are continuous functions. Assume that f, g are continuously differentiable with respect to their first two arguments in a neigborhood of the trajectory co(t), yo(t), and that the derivative
3.1.2 A general uniqueness theorem The key issue for uniqueness of solutions turns out to be the maximal slope of a=a(a) to guarantee uniqueness on time interval T=[to, t,, it is sufficient to require existence of a constant M such that
EROSPACE DYNAMiCS EXAMPLE: GWE ACCELERATIoN of THE TIP 0F认ERU0毛R人TM5Hc人AF LDk小 G For A650LUT # CCELER升T10 N UTH RES/∈ct T0wE工NERT1 AL FRAME (∈ TH IN THiS CASE) 0EFNE兵8uNcH0 f PoINTS