点击切换搜索课件文库搜索结果(478)
文档格式:PPT 文档大小:2.14MB 文档页数:188
• BP网络结构与模型 • BP网络的学习算法 • BP神经网络的重要函数和基本功能 • 一个简单的例子 • BP网络的几个问题 • 改进的BP网络的学习算法 • BP网络的应用示例
文档格式:PDF 文档大小:531.7KB 文档页数:4
将LVQ神经网络用于冷轧带钢表面缺陷的自动分类中,解决了以往分类方法在多缺陷模式类型情况下耗时多和准确率低的问题.对现场采集到的14种主要缺陷类型进行了实验.实验结果表明,基于LVQ神经网络的分类器训练与分类的时间短,在多缺陷种类分类的过程中准确率能得到保证
文档格式:PDF 文档大小:444.17KB 文档页数:5
针对烧结过程生产实际,运用神经网络中的BP学习算法设计了分类器,用于在线推断烧结矿的质量。为了加快BP学习算法的收敛速度,采用了自适应变步长学习算法。实验结果表明,由此建立的烧结过程神经网络质量预报模型,预报正确率高,具有很好的泛化能力
文档格式:PPT 文档大小:1.45MB 文档页数:52
6.1 概述 6.1.1生物神经元模型 6.1.2 人工神经元模型 6.1.3 人工神经网络模型 6.1.4 神经网络的学习方法
文档格式:PDF 文档大小:2.36MB 文档页数:11
深度神经网络近年在计算机视觉以及自然语言处理等任务上不断刷新已有最好性能,已经成为最受关注的研究方向.深度网络模型虽然性能显著,但由于参数量巨大、存储成本与计算成本过高,仍然难以部署到硬件受限的嵌入式或移动设备上.相关研究发现,基于卷积神经网络的深度模型本身存在参数冗余,模型中存在对最终结果无用的参数,这为深度网络模型压缩提供了理论支持.因此,如何在保证模型精度条件下降低模型大小已经成为热点问题.本文对国内外学者近几年在模型压缩方面所取得的成果与进展进行了分类归纳并对其优缺点进行评价,并探讨了模型压缩目前存在的问题以及未来的发展方向
文档格式:PDF 文档大小:579.15KB 文档页数:6
将神经网络与传统专家系统有机地结合,建立了用于高炉炉况预测与判断的神经网络专家系统。该系统命中率高、适应性强,且具有良好的自学习功能
文档格式:PDF 文档大小:3.22MB 文档页数:7
针对传统基于BP神经网络建立的连铸坯质量预测模型训练速度慢、适应能力弱、预测精度低等问题,本文提出一种基于极限学习机的连铸坯质量预测方法,对方大特钢60Si2Mn连铸坯中心疏松和中心偏析缺陷进行预测,并与BP和遗传算法优化BP神经网络预测模型的预测结果进行分析对比.结果表明:BP及GA-BP神经网络预测模型对连铸坯中心疏松和中心偏析缺陷的预测准确率分别为50%、57.5%、70%和72.5%;而基于极限学习机的连铸坯预测模型预测准确率更高,对连铸坯中心疏松和中心偏析缺陷的预测准确率分别为85%和82.5%,且该模型具有极快的运算时间,仅需0.1 s.该模型可对连铸坯质量进行迅速准确地分析,为连铸坯质量预测的在线应用提供了一种新的方法
文档格式:PDF 文档大小:366.69KB 文档页数:3
以恒应变速率凸轮压缩试验机得到的实验数据为基础,采用人工神经网络的方法建立了碳钢变形抗力与应变、应变速率及温度对应关系的预测模型,与多元非线性回归模型比较,神经网络模型具有较高的预测精度
文档格式:PDF 文档大小:489.41KB 文档页数:4
热轧钢材的淬火冷却是改善钢材质量和性能的重要措施,淬火过程的核心就是控制钢板的冷却速度.针对传统的淬火控冷模型的固有缺陷,为了满足扩展钢种、规格及淬火温度高精度的要求,利用神经网络技术建立了神经网络淬火控冷温度预报模型,该模型与回归数学模型相结合,完成淬火控冷现场控制.应用结果证明,该综合模型极大地提高了钢板淬火冷却的控制精度,提高了产品的成材率
文档格式:PDF 文档大小:508.71KB 文档页数:6
在深入研究APT-2神经网络结构的基础上,提出了一种基于神经网络的自适应故障模式分类方法,并应用在轴承故障诊断中,结果表明:该方法对轴承故障模式具有自学习、快速稳定的识别能力
首页上页56789101112下页末页
热门关键字
搜索一下,找到相关课件或文库资源 478 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有