网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(924)
北京大学:《高等代数》课程教学资源(讲义)第十二章 张量积与外代数 12.3.2 用一个多项式的根和另一个多项式计算结式的公式 12.3.3 用一个多项式与它的微商的结式表达该多项式的判别式
文档格式:DOC 文档大小:229KB 文档页数:4
12.3.2用一个多项式的根和另一个多项式计算结式的公式 命题设 f(x)=ax+a1x-+…+an(a≠0 (x) box\+b- + (bo=0) 如果f(x),g(x)在C[x]中的分解式为 g()= bo (x-B) ).(x-)(1) 那么 R(f,g)=ag(a)=(-1)f(B)(*) 证明在数域K上的n+m+1元多项式环K[x,y1yn21m]中,令 f(x,y,yn)=a(x-y)…(x-yn)(2) g(x,z1,m)=b(x-z)…(x-m)(3)
北京大学:《高等代数》课程教学资源(讲义)第五章 5.3 实与复二次型的分类(1/2)
文档格式:DOC 文档大小:140KB 文档页数:3
第五章5-3实与复二次型的分类 1.复、实二次型的规范形 定理复数域上的任一二次型f在可逆变数替换下都可化为规范形 zi+…+z, 其中r是f的秩.复二次型的规范形是唯一的. 证明复数域C上给定二次型) f=, x,x, ( =ai 设它在可逆线性变数替换X=TZ下变为标准型 d1z2+d2z2+…an 这相当于在C上n维线性空间V内做一个基变换 (n2n)=(1,2EnT 使对称双线性函数f(a,B)在新基下的矩阵成对角形
北京大学:《高等代数》课程教学资源(讲义)第一学期第二十八次课
文档格式:DOC 文档大小:214.5KB 文档页数:2
第一学期第二十八次课 命题如果n维空间V上的线性变换A的矩阵相似于对角矩阵,则A在任一不变子空 间M上(的限制)的矩阵相似于对角矩阵。 证明若V上的线性变换A的矩阵相似于对角矩阵,则V可以分解为特征子空间的直 和。记A的所有特征值为,2,2,则V=V4V,取M=nV, 断言M=M1M2⊕M,首先要证明M=M1+M2+…M “2”显然:“”a∈M,则存在a1∈V,使a=a1+a2+…+a,两边 同时用A(j=1,2,…,t-1)作用,得到表达式
北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.1 一元多项式环的基本理论(9.1.1-9.1.6)
文档格式:DOC 文档大小:537.5KB 文档页数:6
第九章元多项式环 9-1一元多项式环的基本理论 911域上的一元多项式环的定义 定义91设K是一个数域,x是一个不定元。下面的形式表达式 f(x) (其中an3a1,a2属于K,且仅有有限个不是0)称为数域K上的一个不定元x的一元多 式。数域K上一个不定元x的多项式的全体记作K[x] 下面定义K[x]内加法、乘法如下 加法设
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.1 线性空间的基本概念 4.1.4 线性空间的基变换,基的过渡矩阵 4.2子空间与商空间 4.2.1 线性空间的子空间的定义
文档格式:DOC 文档大小:188.5KB 文档页数:4
4.1.4线性空间的基变换,基的过渡矩阵 设VK是n维线性空间,设1,E2,…n和2,…,n是两组基,且 (=+++, n2=121+22+…+n2n (nn =tne1 +tn2++ 将其写成矩阵形式 112…ㄣn t21 (n2,n)=(1,2n2122n, :: nn2…tm 定义.11我们称矩阵 (2…n t2122…t2 T=:: Imt In2 为从2n到2的过渡矩阵
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.3 线性映射与线性变换 4.3.4 线性变换的定义与运算
文档格式:DOC 文档大小:143.5KB 文档页数:2
第四章4-3线性映射与线性变换(续) 4.3.4线性变换的定义与运算 定义线性空间到自身的线性映射称为线性变换,记Hom(V,V)为Endr(V)或End (V)。 例恒同变换 E:V→V, >a. 例投影(射影)设V=V1V2,Va∈V,a=a+a2(a1eV,a2∈V2),定义V到 V的投影P(a)=a1,V到V2的投影P2(a)=a2 定义End(V)中的运算(加法、数乘和乘法) 加法定义为(A+)(a)=A(a)+B(a)(Va∈V) 数乘定义为(kA)(a)=k(A(a)),其中k∈K; 乘法(复合)定义为(AB)(a)=A(B(a)
北京大学:《高等代数》课程教学资源(讲义)第十二章 张量积与外代数 12.1 多重线性映射 12.2 线性空间的张量积 12.2.1 域 K 上的二线性空间的张量积的定义(归纳地有多个张量积的定义)
文档格式:DOC 文档大小:245KB 文档页数:3
第十二章张量积与外代数 12-1多重线性映射 12.1.1线性空间的一组基的对偶基的定义 定义12.1对偶空间 设v是k上n维线性空间,E2,Sn是的一组基,则线性函数 f:V→K(K为数域)被f在此组基下的映射法则决定,即f()f(2)f(n)已给 定。现设V内全体线性函数组成的集合为V,则在V内定义加法与数乘如下: (i)f,,+)(a)= f(a)+g(a); (iif EV', k K, f )(a)= (a). 则V关于上述加法、数乘组成K上的线性空间,称为V的对偶空间,记作o(V,K 定义12.2对偶基 假设同定义12.1,定义V内n个线性函数
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.4 线性变换的特征值与特征向量 4.4.1 线性变换的特征值与特征向量的定义
文档格式:DOC 文档大小:77.5KB 文档页数:1
第四章4-4线性变换的特征值与特征向量 4.4.1线性变换的特征值与特征向量的定义 定义若存在非零向量ξ∈V,使得对于某个∈K,有A5=5,则称ξ是A的属 于特征值λ的特征向量。 命题线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间。 证明设51,52是属于的特征向量,Vk,∈K,则 A(k5+2)=k()+a(2)=k+2=(k5+152), 证毕。 定义线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间称 为属于特征值的特征子空间,记为V 4.4.2特征值和特征子空间的计算、特征多项式
北京大学:《高等代数》课程教学资源(讲义)第五章 5.1 双线性函数 5.1.3 线性空间上的对称双线性函数、二次型函数的定义 5.2 二次型 5.2.1 数域上的二次型的定义,二次型 5.2.2 二次型化为标准形的计算方法(配方法)
文档格式:DOC 文档大小:251.5KB 文档页数:3
5.1.3线性空间上的对称双线性函数、二次型函数的定义 定义若f为V上的双线性函数且f(a,B)=f(B,a),则称f为V上的对称双线性 函数。 命题f为对称双线性函数,当且仅当f在任意一组基下的矩阵为对称矩阵,当且仅 当f在某一组基下的矩阵为对称矩阵。 证明任取V的一组基1,2,…,n,任取a,B∈V,设它们在此组基下的坐标所构成 的列向量分别为X和Y,f在此组基下的矩阵记为A,若f为对称双线性函数,则由定
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.4 线性变换的特征值与特征向量 4.4.2 关于特征向量与特征子空间的一些性质 4.4.3 线性变换的不变子空间
文档格式:DOC 文档大小:197.5KB 文档页数:2
第四章4-4特征值与特征向量(续) 4.4.2关于特征向量与特征子空间的一些性质 命题线性变换的属于不同特征值的特征向量线性无关。 证明设A为VK上的线性变换,,2,是两两不同的特征值,(1≤i≤t)是 属于特征子空间V的特征向量,设k,k2,k,∈K,使得k5+k252+…+k5=0,两 边用A作用(i=1,2,…,-1),于是得到方程组 5+52++=0,j0,1,t-1 其中入的方幂组成的矩阵为
首页
上页
80
81
82
83
84
85
86
87
下页
末页
热门关键字
变压]
热分析
内力]
流体分析
食品设备
分配
C程序与设计
《物流运输管理》
信用
化学定律
电势
变形
《心理学》
FLASH动画
思维游戏与思维方法
化工数学
传热与基本原理
变形]
保健学
半导体三极
现代材料分析方法
网络信号
弯曲内力
统计软件分析
农业微生物学
民法学原理
抗震设计
经济贸易
教学组织与设计
化学原理
电影作品分析
大脑
《生产运作管理》
“电工电子技术”
动态分析
电力电子技术
创造方法学
博弈与经济学
编程控制器
DSP课程设计
搜索一下,找到相关课件或文库资源
924
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有