点击切换搜索课件文库搜索结果(898)
文档格式:DOC 文档大小:694.5KB 文档页数:12
第十一章多元函数积分学 第一节二重积分的概念与计算 思考题: 1.把一元定积分的数学模型推广到二维空间,可以得到一个式子 f(x,= lim(, 0 i=1 你对这个式子要说些什么?回顾一元定积分的定义,可以对推广来的这个式子描述出一个 完整的数学模型,被称为二重积分的定义,你将获得一次创造思维的锻炼,对微元法模型 的理解会更深刻,不妨一试
文档格式:DOC 文档大小:373KB 文档页数:7
第五章向量分析 第二十讲 Stokes公式 5-5-1 Stokes公式 5-5-2旋度及其物理意义 课后作业: 阅读:第五章第五节: Gauss公式和 Stokes公式pp.173--181 预习:第五章第六节:无源场和保守场pp.182-187 作业:习题5:pp181-182:11),(3),(5),(7);2;33);4,(1);5:6. 5-5 Stokes公式 本节专门讨论空间向量场 F(x,y, =)=X(x,y, =)i+Y(x, y, s)j+Z(x,y, =k 5-5-1 Stokes公式
文档格式:PPT 文档大小:860KB 文档页数:37
定积分的几何应用 一、平面图形的面积 1直角坐标系 作为一般情况讨论,设平面图形由[a,b] 上连续的两条曲线y=f(x)与y=g(x) )及两条直线x=ax=b所围成 在[a,b]上任取典型小区间[xx+dx 与它相对应的小曲边梯形的面积为局部量dA
文档格式:DOC 文档大小:395KB 文档页数:4
设D是以点A,1),B(-1),C(-1,-1)的三角形,则 √x2+3y2+1)si(xy)+2dy=(A)(中) (A)4.(B)2.(C)1.(D)0 2.设球体x2+y2+z2≤2az(a>0)中每点的质量密度与该点 到坐标原点的距离的平方成反比,则该球体的质量M与质心x坐标X为 (中) (A)M=2ka, X X=-a (C)M=2kma, x=la. (D) M=kma, x=Ia 3.设D={(x,y)∈R2x2+y221>0,f(x,y)在D上连续,在D内可微, f(0,0)=1,D的正向边界为C1。若f(x,y)在D上满足方程 afaf 1 ∫(x,y)
文档格式:DOC 文档大小:1.62MB 文档页数:11
第二章第五节 微分学在几何方面的应用及多元函数的 Taylor公式 课后作业 阅读:第二章第四节43:pp.56-58;第五节52:pp.60-63 预习:第二章第五节52:pp.60-63 作业:第二章习题4:pp.59-60 6,(3),⑤5);7,(1),(2);8;10;12;13. 补充:1,求函数f(x,y)=√1-x2-y2在(00)点的二阶带 格伦日余项的 Taylor公式 2,求函数∫(x,y)=x3+y3+23-3xz在P(1)点的 三阶带拉格伦日余项的 Taylor公式
文档格式:DOC 文档大小:253.5KB 文档页数:5
12-3张量 12.3.1线性变换的张量积的矩阵与线性变换的矩阵的关系 设V是域K上的n维线性空间,G和是V的两组基,且 (n)= (1) 设a∈V在(1n)下的坐标为(x1,x),则由前面的知识,可得 x :=T (2) ) 由此可知,坐标是逆变的 现在考虑V的对偶空间n在的对偶基为f,在v的 对偶基为gg,那么就有
文档格式:DOC 文档大小:307.5KB 文档页数:9
第二章多元函数微分学 11-Exe-2习题讨论(II) 11Exe2-1讨论题 11-Exe-2-1参考解答 习题讨论 题目 若函数z=(x),方程Fx-a,y-=0确定,其a,b,c 为常数,F∈C2,证明: (1)由z=z(x,y)确定的曲面上任一点的切平面共点 (2)函数z=2(x,y)满足偏微分方程 a202=(a dxdy 今有三个二次曲面 2.设曲面S由方程ax+by+c=G(x2+y2+x2)确定,试证明: 曲面S上任一点的法线与某定直线相交
文档格式:DOC 文档大小:154KB 文档页数:2
9-2C,R,Q上多项式的因式分解 9.2.1复数域、实数域上多项式的因式分解 定理(高等代数基本定理)复数域C上任意一个次数≥1的多项式在C内必有一个 根。 这个定理的证明是放在复变函数课程中完成的。 由高等代数基本定理,我们得到C[x]内多项式的因式分解的重要结论: 命题C[x]内一个次数≥1的多项式p(x)是不可约多项式的充分必要条件为它是一次 多项式。 证明在任一数域K上的一次多项式f(x)都是K[x]内的不可约多项式(因为 (f(x),f(x)=1)。现在假设p(x)是C[x]内的一个不可约多项式
文档格式:PPS 文档大小:212.5KB 文档页数:10
概率统计习题课(3) Z轴上 3-22 的分界 f2(2)-Oy)得到 的? 1000 10 1 0003 正确解法 考虑(1)中被积函数为非零情形
文档格式:PPT 文档大小:291.5KB 文档页数:41
Let be the set of all input variables, X={, X1, .Xn} Let y be the set of all output variables, y={Y, 1 ...m} o The combinational function, F, operated on the input variable set, to produce the output variable set y. o The output is related to the input as
首页上页8182838485868788下页末页
热门关键字
搜索一下,找到相关课件或文库资源 898 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有