点击切换搜索课件文库搜索结果(853)
文档格式:PPT 文档大小:1.2MB 文档页数:40
到目前为止, 我们所学习的只是一元函数的分析性质。但在现实 生活中,除了非常简单的情况之外,可以仅用一个自变量和一个因变 量的变化关系来刻画的问题可以说是非常少的。比如像物理学中研究 质点运动这么一个相对较为容易的问题,也需要用到确定空间位置的 三个坐标变量 x、y、z 和一个时间变量 t 以及多个函数值(如位置、 速度、加速度、动量等),更不用说在各种不同的学科研究中会遇到 更为复杂的问题。这种多个自变量和多个因变量的变化关系,反映到 数学上就是多元函数(或多元函数组,即向量值函数)
文档格式:DOC 文档大小:18KB 文档页数:1
一、内容简介 以罗尔定理,拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整 个微分学的理论基础,尤其是拉格朗日中值定理.它们建立了函数值与导数值之 间的定量联系,因而可用中值定理通过导数去研究函数的性态;中值定理的主要 作用在于理论分析和证明;同时由柯西中值定理还可导出一个求极限的洛必达法 则.中值定理的应用主要是以中值定理为基础,应用导数判断函数上升、下降、 取极值、凹形、凸形和拐点等项的重要性态从而能把握住函数图象的各种几何 特征.此外,极值问题有重要的实际应用
文档格式:PPS 文档大小:8.8MB 文档页数:181
§7.1 离子的迁移 1.电解质溶液的导电机理 2.法拉第定律 3.离子的迁移数 §7.2 电解质溶液的电导 1. 电导、电导率、摩尔电导率 2. 电导的测定 3. 电导率和摩尔电导率随浓度的变化 4. 离子独立运动定律及离子摩尔电导率 §7.3 电导测定的应用示例 1. 求算弱电解质的电离度和电离平衡常数 2. 求算微溶盐的溶解度和溶度积 3. 电导滴定 §7.4 强电解质的活度和活度系数 1.离子的平均活度a± 和平均活度系数± 2.影响离子平均活度系数±的因素 §7.5 强电解质溶液理论简介 1. 离子氛模型及德拜-尤格尔极限公式 2.不对称离子氛及德拜-尤格尔-盎萨格电导公式 §7.6 可逆电池 1.可逆电池的必要条件 2.可逆电极的种类 3.电动势的测定 4.电池表示法 5.电池表达式与电池反应的“互译” §7.7 可逆电池热力学 1.可逆电池电动势与浓度的关系——能斯特方程 2. 电动势及其温度系数与电池反应热力学量的关系 3. 离子的热力学函数 §7.8 电极电势 1. 电池电动势产生机理 2. 电极电势 (1) 标准氢电极 (SHE) (2) 任意电极的电极电势数值和符号的确定 (3) 电极电势的能斯特公式 (4) 参比电极 §7.9 由电极电势计算电池电动势 §7.10 电极电势和电池电动势的应用 1. 判断反应趋势 2. 求化学反应的K 3. 求微溶盐的活度积Kap 4. 求离子的平均活度系数  5. 测定pH 6. 电势滴定 §7.11 电极的极化 1. 过电势 2. 电极极化的原因 3. 过电势的测定 §7.12 电解时的电极反应 1.阴极反应(还原反应) 2.阳极反应(氧化反应) §7.13 金属的腐蚀与防腐 §7.14 化学电源简介
文档格式:PDF 文档大小:184.19KB 文档页数:8
在数学分析课程中我们已经熟悉 Riemann积分.在处理连续函数或者逐段连续函数 时,在计算一些几何和物理的量时它是很有用的但它也存在一些缺陷例如, Riemann积 分对被积函数的要求较高,它要求被积函数“基本上”是连续的(其确切含义将在§4.4 讨论),在处理极限与积分交换次序时,需要对函数列加上一致收敛性的条件等由于这些 缺陷,使得 Riemann积分在处理分析数学中的一些问题时显得不够有力因此需要建立 新的积分的理论.二十世纪初, Lebesgue建立了一种新的积分理论新的积分理论消除了 上述缺陷,并且包含了原有的 Riemann积分理论
文档格式:PDF 文档大小:174.4KB 文档页数:9
在给定了一个测度空间以后,由定义在这个空间上的一个函数可以自然地产生出各 种各样的集.为用测度论的方法研究这个函数我们自然要求这些集是可测的.由此产生 了可测函数的概念在定义积分时候,对被积函数的一个基本要求就是这个函数必须是可 测的我们将看到可测函数是一类很广泛的函数.特别地,欧氏空间R上的 Lebesgue可 测函数是比连续函数更广泛的一类函数.而且可测函数类对极限运算是封闭的,这将使我 们在讨论积分的时候更加便利
文档格式:PDF 文档大小:253.22KB 文档页数:40
到目前为止, 我们所学习的只是一元函数的分析性质。但在现实 生活中,除了非常简单的情况之外,可以仅用一个自变量和一个因变 量的变化关系来刻画的问题可以说是非常少的。比如像物理学中研究 质点运动这么一个相对较为容易的问题,也需要用到确定空间位置的 三个坐标变量 x、y、z 和一个时间变量 t 以及多个函数值(如位置、 速度、加速度、动量等),更不用说在各种不同的学科研究中会遇到 更为复杂的问题
文档格式:PPT 文档大小:506.5KB 文档页数:41
我们这门课程叫高等数学,它的内容包括一元 和多元微积分学,无穷级数论和作为理论基础的 极限理论,以及作为一元微积分学的简单应用— —常微分方程。由于构成它的主体是一元函数微 积分学,所以有时又称为微积分。 17世纪(1763年)Descartes建立了解析几何,同 时把变量引入数学,对数学的发展产生了巨大的影 响,使数学从研究常量的初等数学进一步发展到研 究变量的高等数学。微积分是高等数学的一个重要 的组成部分,是研究变量间的依赖关系——函数的 一门学科,是学习其它自然科学的基础
文档格式:DOC 文档大小:18KB 文档页数:1
以罗尔定理,拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整 个微分学的理论基础,尤其是拉格朗日中值定理.它们建立了函数值与导数值之 间的定量联系,因而可用中值定理通过导数去研究函数的性态;中值定理的主要 作用在于理论分析和证明:同时由柯西中值定理还可导出一个求极限的洛必达法 则.中值定理的应用主要是以中值定理为基础,应用导数判断函数上升、下降 取极值、凹形、凸形和拐点等项的重要性态。从而能把握住函数图象的各种几何 特征.此外,极值问题有重要的实际应用
文档格式:PDF 文档大小:83.85KB 文档页数:13
3.1连续和间断 定义∫(x)定义在(ab),x0∈(ab),若mf(x)→>f(x),则称函数f(x)在 点x连续,x0称为连续点,否则称x为间断点 函数∫(x)在x∈(a,b)连续也可用E-6语言来叙述:∫(x)定义于(a,b),x0∈(a,b) 若E>0,38>0,使得当x∈(ab)且x-x∫(xo+0)且 f(x0-0)=f(x0)=f(x0+0), 即如果∫(x)在x左右极限都存在,且等于该点函数值,称∫(x)在该点连续
文档格式:PDF 文档大小:204.16KB 文档页数:9
在给定了一个测度空间以后,由定义在这个空间上的一个函数可以自然地产生出各种 各样的集.为用测度论的方法研究这个函数我们自然要求这些集是可测的.由此产生了可 测函数的概念在定义积分时候,对被积函数的一个基本要求就是这个函数必须是可测的我 们将看到可测函数是一类很广泛的函数.特别地,欧氏空间R上的 Lebesgue可测函数是比 连续函数更广泛的一类函数.而且可测函数类对极限运算是封闭的,这将使我们在讨论积 分的时候更加便利
首页上页7980818283848586下页末页
热门关键字
搜索一下,找到相关课件或文库资源 853 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有