点击切换搜索课件文库搜索结果(9268)
文档格式:PPT 文档大小:101KB 文档页数:13
1.试分析下列程序段: ADD AX,BX JNC L2 SUB AX,BX JNC L3 JMP SHORT L5 如果AX、BX的内容给定如下:
文档格式:PDF 文档大小:1.5MB 文档页数:8
采用数学模拟方法研究钢轨钢连铸坯脱氢退火行为,分析不同退火温度、退火时间条件下连铸坯脱氢效果,优化了脱氢退火工艺.在脱氢退火过程中,连铸坯角部和边部的氢含量快速降低,而连铸坯中心氢含量在加热段后期开始降低;随着退火温度的升高,连铸坯中心脱氢的起始点明显提前,最大脱氢速率显著增加.随着均热段时间逐渐延长,连铸坯中心氢含量明显降低,但脱氢速率的增加幅度逐渐减小.通过优化脱氢退火工艺参数,连铸坯中心氢的质量分数能够降低至0.6×10−6,脱氢效果显著
文档格式:PDF 文档大小:1.02MB 文档页数:8
通过水溶液还原法在80 ℃合成Cu纳米线,再利用液相还原法在低温水溶液中将Au负载于其表面,最后通过暴露的Cu纳米线与Pt前驱体盐发生Galvanic置换反应,将Pt负载在Au?Cu纳米线表面,构成Pt?Au?Cu三元核壳结构纳米线。根据对样品形貌、结构的表征和分析,探讨了Pt?Au?Cu纳米线的合成机理。结果表明:合成纳米线物相组成为单质Cu,平均直径约为83 nm;负载Au后的Au?Cu纳米线平均直径约为90 nm,表面附着的小颗粒为单质Au颗粒,构成了核壳结构;负载Pt后得到Pt?Au?Cu三元核壳结构纳米线,平均直径约为120 nm。Cu纳米线表面Au颗粒的形成依赖于异相形核与长大机制,并遵循先层状后岛状生长的混合生长模式。负载Pt过程中存在Pt、Cu互扩散,使得最终纳米线表面多为Pt颗粒而整体则形成CuPt 合金相
文档格式:PDF 文档大小:509.08KB 文档页数:96
7.1 z 变换 一、从拉普拉斯变换到z变换 二、收敛域 7.2 z 变换的性质 7.3 逆z变换 7.4 z 域分析 一、差分方程的变换解 二、系统的z域框图 三、s域与z域的关系 四、系统的频率响应
文档格式:PDF 文档大小:301KB 文档页数:43
2.1 LTI连续系统的响应 一、微分方程的经典解 二、关于0-和0+初始值 三、零输入响应和零状态响应 2.2 冲激响应和阶跃响应 一、冲激响应 二、阶跃响应 2.3 卷积积分 一、信号时域分解与卷积 二、卷积的图解 2.4 卷积积分的性质 一、卷积代数 二、奇异函数的卷积特性 三、卷积的微积分性质 四、卷积的时移特性
文档格式:PDF 文档大小:363.74KB 文档页数:79
8.0 引言 8.1 系统的状态空间描述 8.2 状态方程的建立 8.3 连续系统状态方程的解 8.4 离散系统状态方程的解 8.5 系统稳定性判别
文档格式:DOC 文档大小:1.03MB 文档页数:6
一、选择题:(每小题4分,共40分) 每题给出四个备选答案,其中只有一个答案是正确的,请将正确答 案的标号(A或B或C或D)写在题号前的横线上。 1.积分e[(t)+(d等于 (A)-1(B)1(C)2(D)3 2.下列微分或差分方程所描述的系统,为线性时变系统的是: (a)y'(t)+3y(t)=f(t)+2f(t) (b)y(t)+(+t)y2(t)=f(t) (C)y(k)+(k-1)y(k-2)=f(k)(d)y(k)+2y(k-1)y(k-2)=f(k)
文档格式:PPT 文档大小:607.5KB 文档页数:101
第1章时域离散信号和时域离散系统 1.1引言 1.2时域离散信号 1.3时域离散系统 1.4时域离散系统的输入输出描述法线性常系数差分方程 1.5模拟信号数字处理方法
文档格式:PPT 文档大小:1.15MB 文档页数:83
第3章离散傅里叶变换(DFT) 3.1离散傅里叶变换的定义 3.2离散傅里叶变换的基本性质 3.3频率域采样 3.4DFT的应用举例
文档格式:PPT 文档大小:906.5KB 文档页数:71
第5章时域离散系统的基本网络结构与 状态变量分析法 5.1引言 5.2用信号流图表示网络结构 5.3无奶长脉冲响应基本网络结构 5.4有限长脉冲响应基本网络结构 5.5状态变量分析法
首页上页860861862863864865866867下页末页
热门关键字
搜索一下,找到相关课件或文库资源 9268 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有