Fourier series: Periodic signals and lti Systems ()=∑H(k k= ak一→H(ko)ak “g Soak-→|H(jkco)lkl H(7k)=1H(k0e∠B(ko) or powers of signals get modified through filter/system ncludes both amplitude phase akeJhwon
Fouriers derivation of the ct fourier transform x(t)-an aperiodic signal view it as the limit of a periodic signal as t→∞ For a periodic signal the harmonic components are spaced Oo=2π/ T apart. AsT→∞,Obo→>0, and harmonic components are space
Motivation for the Laplace transform CT Fourier transform enables us to do a lot of things, e. g Analyze frequency response of lTi systems Sampling Modulation Why do we need yet another transform? One view of Laplace Transform is as an extension of the Fourier
3.1 X(eo)=2xnJe-jon where x[n] is a real sequence. Therefore X(e)=Rl∑xnlo/。 ∑xR(-mu)=∑ x[n]cos(on),and xmm)=m∑刈nm∑刈mc-m)=-2 xn] sin(oon) Since cos(on)and sin(on)are, respectively, even and odd functions of o, Xre(eJo) is an even function of o