点击切换搜索课件文库搜索结果(9354)
文档格式:PPT 文档大小:8MB 文档页数:31
1.掌握 肝、胰、气管、肺、肾脏结构 2.掌握肺内导气部管壁结构特点 3. 掌握气血屏障 4.掌握血尿屏障
文档格式:PDF 文档大小:462.32KB 文档页数:26
§1.1 理想气体状态方程式 §1.4 真实气体 §1.3 气体分子运动论 §1.2 气体混合物
文档格式:PDF 文档大小:1.46MB 文档页数:10
通过浮选试验、DLVO理论计算、聚焦光束反射测量(FBRM)等研究了油酸钠浮选体系下粒度大小对赤铁矿和石英浮选分离的影响。人工混合矿浮选试验表明,窄粒级粗粒或中等粒级的赤铁矿?石英混合矿(CH&CQ和MH&CQ)的浮选效果较好,其中CH&CQ和MH&CQ的分选效率分别为85.49%和84.26%,明显高于全粒级混合矿(RH&RQ)的分选效率74.94%;但窄粒级的细粒赤铁矿?石英混合矿(FH&FQ)的浮选效果则较差,其分选效率只有54.98%。浮选动力学试验表明,赤铁矿的浮选速率和回收率不仅与赤铁矿的粒度有关,还受石英粒度的影响,细粒脉石矿物石英会降低赤铁矿的浮选速率和回收率。DLVO理论计算表明,当矿浆pH值为9.0时,石英与赤铁矿颗粒间的相互作用力为斥力,此时细粒石英很难“罩盖”在赤铁矿表面并通过这种“直接作用”的方式抑制赤铁矿浮选,这也与聚焦光束反射测量(FBRM)的测定结果基本一致;颗粒?气泡碰撞分析表明,在浮选过程中细粒石英可能通过“边界层效应”的方式跟随气泡升浮(夹带作用),影响赤铁矿颗粒与气泡间的碰撞及黏附,从而降低了赤铁矿的浮选速率和回收率
文档格式:PPTX 文档大小:1.55MB 文档页数:82
一、过程气相色谱仪概述 二、恒温炉和程序升温炉 三、色谱柱和柱系统 四、检测器 五、过程色谱仪使用的辅助气体 六、定量分析及标定
文档格式:PPT 文档大小:1.04MB 文档页数:35
➢ 工厂照明系统的光源 ➢ 照明技术的基本知识 ➢ 常用灯具的类型及选择与布置 ➢ 工厂的电气照明负荷的供电方式和计算方法 ➢ 相关线路导线的选择
文档格式:PPT 文档大小:1.95MB 文档页数:66
◆ 第一节 微弱扰动波的传播 ◆ 第二节 气体一维定常等熵流动 ◆ 第三节 气体一维定常等熵变截面管流 ◆ 第四节 正激波
文档格式:PDF 文档大小:1.86MB 文档页数:10
陶瓷膜是过滤高温含尘烟气最有效的材料之一,其过滤性能和再生性能与尘粒在陶瓷膜孔道内的沉积和脱附机制相关。本文建立了不同孔隙率的陶瓷膜物理模型,然后结合连续性方程、动量方程和能量方程,设定边界条件以及沉积条件,模拟了陶瓷膜过滤和脉冲反吹时,高温烟气的流动以及尘粒的沉积与脱附过程。结果表明,过滤速度较低和陶瓷膜孔隙率较高时,尘粒易于沉积在陶瓷膜孔道内;脉冲反吹时,增加反吹压力,延长反吹时间,尘粒易于从陶瓷膜孔道脱附。采用厚度为20 mm,长度为1.5 m,孔隙率为40%的陶瓷膜管过滤温度为1000 ℃,流速为1 m·min?1,压力为0.1 MPa的含尘烟气时,反吹气压力应不低于0.3 MPa,反吹时间不短于0.02 s,尘粒脱附时间在13 s,脉冲反吹时间间隔应高于452 s
文档格式:PDF 文档大小:722.13KB 文档页数:9
利用同步热跟踪原理, 提供一种测定微量气液反应热的研究方法.通过程序控制容器外壳温度与内部溶液同步升温, 减小温度梯度, 形成“热屏障”, 阻止溶液以热传导、对流、辐射的形式与外界环境进行热交换, 获得动态绝热环境, 提高微量气液反应热直接测量的精度, 减少样品用量, 无需热补偿.采用MEA (乙醇胺) 与MDEA (N-甲基二乙醇胺) 两类弱碱吸收液, 容积为15 mL, 分别在10%、20%、30%、40%和50%质量分数下, 测定吸收CO2的反应热.实验表明: 同步热跟踪法测量更为准确; 随溶液浓度的增加, MEA反应热先降低后升高, MDEA反应热逐渐降低; 在质量分数为20%~40%时, MEA、MDEA质量分数对反应热的影响不显著; 反应放热形成的升温曲线出现“下凹”现象
文档格式:PDF 文档大小:3MB 文档页数:28
1.掌握 肝、胰、气管、肺的结构 2.掌握肺内导气部管壁结构的共同特点 3. 掌握气血屏障
文档格式:PPTX 文档大小:5.79MB 文档页数:46
一、内燃机排气污染物的取样系统 二、气体污染物的测量 三、微粒的测量和分析 四、排气可见污染物测量 五、曲轴箱排放物和蒸发排放物的测量
首页上页9293949596979899下页末页
热门关键字
搜索一下,找到相关课件或文库资源 9354 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有