点击切换搜索课件文库搜索结果(9909)
文档格式:PDF 文档大小:241.11KB 文档页数:29
集合论的基础是由德国数学家 Cantor 在19世纪 70 年代奠定的。 集合:指具有某种特定性质的具体的或抽象的对象汇集成的总体。 这些具体的或抽象的对象称为该集合的元素
文档格式:DOC 文档大小:214KB 文档页数:4
由前一节的讨论,已经得到下面的两点性质: 1.辛空间(V,f)中一定能找到一组基E,E2,n-2n满足 f(n)=1,1≤i≤n, f()=0,-n≤i,jn,i+j≠0
文档格式:DOC 文档大小:586KB 文档页数:9
第六章常微分方程 6-3高阶线性方程 6-3-1高阶线性常系数方程的解 6-3-2 Euler方程 第二十三讲高阶线性常系数阶线性方程 6-3-1高阶线性常系数齐次方程的解 考察n阶线性常系数齐次方程 d x dx d +am+.+ax=o dr dt d t 其中a1,an为实常数 或记成 L(Dx=o 由上一段的讨论知道方程L(Dx=0在区间(-∞,+∞)有n个线性无关解
文档格式:DOC 文档大小:214.5KB 文档页数:2
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.5 商空间上诱导的线性变换 4.5.1 线性变换在(关于不变子空间的)商空间上的诱导变换的定义
文档格式:DOC 文档大小:197.5KB 文档页数:2
第四章4-4特征值与特征向量(续) 4.4.2关于特征向量与特征子空间的一些性质 命题线性变换的属于不同特征值的特征向量线性无关。 证明设A为VK上的线性变换,,2,是两两不同的特征值,(1≤i≤t)是 属于特征子空间V的特征向量,设k,k2,k,∈K,使得k5+k252+…+k5=0,两 边用A作用(i=1,2,…,-1),于是得到方程组 5+52++=0,j0,1,t-1 其中入的方幂组成的矩阵为
文档格式:DOC 文档大小:77.5KB 文档页数:1
第四章4-4线性变换的特征值与特征向量 4.4.1线性变换的特征值与特征向量的定义 定义若存在非零向量ξ∈V,使得对于某个∈K,有A5=5,则称ξ是A的属 于特征值λ的特征向量。 命题线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间。 证明设51,52是属于的特征向量,Vk,∈K,则 A(k5+2)=k()+a(2)=k+2=(k5+152), 证毕。 定义线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间称 为属于特征值的特征子空间,记为V 4.4.2特征值和特征子空间的计算、特征多项式
文档格式:DOC 文档大小:144KB 文档页数:4
在解析几何中,两个点a和B间的距离等于向量a-B的长度 定义13长度-(称为向量a和B的距离,记为d(a,B) 不难证明距离的三条性质
文档格式:DOC 文档大小:160.5KB 文档页数:5
由第五章得到,任意一个对称矩阵都合同于一个对角矩阵,换句话说,都有 一个可逆矩阵C使CAC成对角形现在利用欧氏空间的理论,第五章中关于实对 称矩阵的结果可以加强这一节的主要结果是: 对于任意一个n级实对称矩阵A,都存在一个n级正交矩阵T
文档格式:DOC 文档大小:73KB 文档页数:1
定义10设v1,V2是欧氏空间V中两个子空间如果对于任意的a∈V1,BEV2 恒有 (a,B)=0 则称V,2为正交的,记为V1⊥V2一个向量,如果对于任意的B∈V,恒有 (a,B)=0
文档格式:DOC 文档大小:83KB 文档页数:2
定义9欧氏空间V的线性变换A叫做一个正交变换如果它保持向量的内积 不变,即对任意的,都有a,B∈V,都有 (Aa, AB)=(a, B)
首页上页984985986987988989990991下页末页
热门关键字
搜索一下,找到相关课件或文库资源 9909 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有