相关文档

香港科技大学:《微观经济学》(英文版) Appendix: Math Preparation1

then there exists AE R" such that (Kuhn-Tucker condition) G(s') =0 and 1. Lagrange Method for Constrained Optimization FOC: D.L(,")=0. The following classical theorem is from Takayama(1993, p.114). Theorem A-4 (Sufficieney). Let f and, i= ,..m, be quasi-concave, where Theorem A-1. (Lagrange). For f: and G"", consider the following G=(.8 ) Let r' satisfy the Kuhn-Tucker condition and the FOC for (A.2). Then, x' problem is a global maximum point if max f() (1)Df(x') =0, and f is locally twice continuously differentiable,or
团购合买资源类别:文库,文档格式:PDF,文档页数:3,文件大小:62.23KB
点击进入文档下载页(PDF格式)
已到末页,全文结束
点击下载(PDF格式)

浏览记录