幻灯片4目录 孙小气 §845高浓气体吸收时填料层高度计算 §8.4.6解吸 §8.5其它类型吸收 §86吸收过程的传质系数 浙江大学本科生课程 化工原理 第八章气体吸收 1/14
浙江大学本科生课程 化工原理 第八章 气体吸收 1/14 幻灯片4目录 §8.4.5 高浓气体吸收时填料层高度计算 §8.4.6 解吸 §8.5 其它类型吸收 §8.6 吸收过程的传质系数
§84高浓气体吸收时填料层高度计算 特点: (1)气相流率G沿塔高有明显变化,至于液相流率,则 仍可作为常数。操作线不为直线。 (2)气相传质系数在全塔范围内不再为一常数,至 于液相传质系数,由于液相流率变化不显著,则仍 可作为常数。 (3)热效应对相平衡关系的影响不可忽略。平衡线可 能不为直线。 溶解热导致液相温度升高,相平衡常数增大,不 利于吸收。 浙江大学本科生课程 化工原理 第八章气体吸收 2/14
浙江大学本科生课程 化工原理 第八章 气体吸收 2/14 §8.4.5 高浓气体吸收时填料层高度计算 特点: (1)气相流率G沿塔高有明显变化,至于液相流率,则 仍可作为常数。操作线不为直线。 (2)气相传质系数在全塔范围内不再为一常数,至 于液相传质系数,由于液相流率变化不显著,则仍 可作为常数。 (3)热效应对相平衡关系的影响不可忽略。平衡线可 能不为直线。 溶解热导致液相温度升高,相平衡常数增大,不 利于吸收
§84高浓气体吸收时填料层高度计算 全塔物料衡算: 6=2S(X-X)+Y B 填料层高度的一般计算式 H 底4(G)_r底d(Lx) 顶k,a(p-y)J顾kx-x 浙江大学本科生课程 化工原理 第八章气体吸收 3/14
浙江大学本科生课程 化工原理 第八章 气体吸收 3/14 ( ) b a a B S b X X Y G L Y = − + 全塔物料衡算: 填料层高度的一般计算式 ( ) ( ) ( ) ( ) − = − = 底 顶 底 顶 k a x x d Lx k a y y d G y H y i x i §8.4.5 高浓气体吸收时填料层高度计算
§8.4.6解吸(脱吸) 解吸方法: 高浓端 G 1.减压解吸--闪蒸 2.应用解吸剂进行解吸…吸收的逆操作传质方向 常用的解吸剂有惰性气体、水蒸气或贫气等 ShitI (1)气提-解吸剂用惰性气体或贫气 (2)汽提或提馏-解吸剂用水蒸汽 解吸剂 b b 低浓端 逆流解吸塔 浙江大学本科生课程 化工原理 第八章气体吸收 4/14
浙江大学本科生课程 化工原理 第八章 气体吸收 4/14 一.解吸方法: 1.减压解吸------闪蒸 2.应用解吸剂进行解吸 常用的解吸剂有惰性气体、水蒸气或贫气等 (1)气提 (2)汽提或提馏 ------解吸剂用惰性气体或贫气 -----解吸剂用水蒸汽 §8.4.6 解吸(脱吸) G ya L xa G y L x yb xb 逆流解吸塔 高浓端 低浓端 传质方向 解 吸 剂 ----吸收的逆操作
高浓端 §8.4.6解吸(脱吸) 低浓气体解吸时 传质向 特点: G ◆全塔物料衡算、操作线方程、填料层高 度计算式与吸收时的完全相同 解 吸yb 剂低浓端E +s 逆流解吸塔 1-S +A X- b No = sw 今最小气液比G)=x1-x Va y B 1.2-20/G xb-xa+ya 浙江大学本科生课程 化工原理 第八章气体吸收 y≈(x-xa)+ya
浙江大学本科生课程 化工原理 第八章 气体吸收 5/14 y E ya * ya A yb B o xb xa x §8.4.6 解吸(脱吸) 二.低浓气体解吸时 特点: ❖全塔物料衡算、操作线方程、填料层高 度计算式与吸收时的完全相同 a b a b y y x x L G − − = min min (1.2 ~ 2.0) = L G L G ❖最小气液比 ( ) + − − − − = S y y y y S S N a a b a OG ln 1 1 1 NOL = SNOG ( ) + − − − − = A x x x x A A N b b a b OL ln 1 1 1 ( ) b b a a x x y G L y − + ( ) a a x x y G L y − + G ya L xa G y L x yb xb 逆流解吸塔 高浓端 低浓端 传质方向 解 吸 剂
解吸(脱吸)举例 例4吸收一解吸联合操作系统如图所示。两塔填料层 高度均为7m,G=1000kmo/h,L=150kmo/h,解吸气量 G′=300kmo/h,组分浓度为:y6=0.015,ya=0.045, y'b=0,xb=0095(均为摩尔分率),且知:吸收系统相 平衡关系为y=0.15x,解吸系统相平衡关系为y=0.6x。 试求: (1)吸收塔气体出口浓度y”,传质单元数Noc; (2)解吸塔传质单元数Noe; (3)若解吸气体流量减少为 250kmo/h,则吸收塔气体 出口浓度y又为多少?(其 吸收塔 余操作条件均不变,且气体 解吸塔 流量变化时,解吸塔Hoc基本不变) 浙江大学本科生课程 化工原理 第八章气体吸收 6/14
浙江大学本科生课程 化工原理 第八章 气体吸收 6/14 解吸(脱吸)举例 ya xa xa ya 吸 解 收 吸 塔 塔 xb yb ,G G, yb xb 例4 吸收-解吸联合操作系统如图所示。两塔填料层 高度均为7m,G=1000kmol/h,L=150kmol/h,解吸气量 G=300kmol/h , 组 分 浓 度 为 : yb =0.015 , y a =0.045 , y b =0,xb =0.095(均为摩尔分率),且知:吸收系统相 平衡关系为y = 0.15x,解吸系统相平衡关系为y = 0.6x。 试求: (1) 吸收塔气体出口浓度ya,传质单元数NOG; (2) 解吸塔传质单元数N OG; (3) 若解吸气体流量减少为 250kmol/h,则吸收塔气体 出口浓度ya又为多少?(其 余操作条件均不变,且气体 流量变化时,解吸塔H OG基本不变)
解吸(脱吸)举例 解:()求吸收塔气体出口浓度y2,传质单元数NoG 对整个流程(包括两塔)作物料衡算,可得: L-150kmolh t ya=0.045 吸 G Va s yi 收 解吸 塔 塔 300 0.015一 0.045一 7m 7m/ 1000 0.15 =0.0015 y6=0.015x=0.095G=300kmo/h G=1000kmol/h 浙江大学本科生课程N, Inlf- s ya +s 化工原理 S 7114
浙江大学本科生课程 化工原理 第八章 气体吸收 7/14 ya xa L=150kmol/h ya =0.045 xa 7m 7m y=0.15x y=0.6x xb yb=0 yb =0.015 xb =0.095 G=300kmol/h G=1000kmol/h 吸 收 塔 解 吸 塔 解: (1) 求吸收塔气体出口浓度ya,传质单元数NOG ( ) ( ) ( ) a b a b b a a b y y G G y y G y y G y y − = − − = − ( ) 0.0015 0.045 0 1000 300 0.015 = = − − 解吸(脱吸)举例 对整个流程(包括两塔)作物料衡算,可得: ( ) + − − − − = S y y y y S S N a a b a OG ln 1 1 1
解吸(脱吸)举例 对吸收塔: X L=150kmol/h 4 ya=.045 0.015-0.0015 吸 0.095 解 150/1000 收 0.005 塔 塔 7m 7m JsmG0.15×1000 y0.15 0.6 150 Db-mx y6=0.015x=0.095G=300kmo/h OG G=1000kmol/h 0.015-0.15×0.005 0.0015-0.15×0.005 18 十 浙江大学本科生课程 Va -ya 化工原理 第八章气体吸收 8/14
浙江大学本科生课程 化工原理 第八章 气体吸收 8/14 对吸收塔: 0.005 150 1000 0.015 0.0015 0.095 = − = − − = − L G y y x x b a a b 1 150 0.15 1000 = = = L m G S 解吸(脱吸)举例 − 1 − − = a a b a OG y m x y m x N ya xa L=150kmol/h ya =0.045 xa 7m 7m y=0.15x y=0.6x xb yb=0 yb =0.015 xb =0.095 G=300kmol/h G=1000kmol/h 吸 收 塔 解 吸 塔 ( ) + − − − − = S y y y y S S N a a b a OG ln 1 1 1 18 1 0.0015 0.15 0.005 0.015 0.15 0.005 = − − − =
解吸(脱吸)举例 (2)求解吸塔传质单元数Noc L=150kmolh tya m'G0.6×300 =1.2 L 150 吸收塔 +s 解吸塔 S 7m 0-0.6×0.095 0.15 +1.2 1-12 0.045-0.6×0.095 6.93 y6=0.015Xb 250kmol G=1000kmol/h (3)若解吸气体流量减少为250kmol/h,则吸收塔气体出口浓 度yn又为多少?(其余操作条件均不变,且气体流量变化时, 解吸塔H'o基本不变) H 7 OG =1.01m 6.93 浙江大学本科生课程 化工原理 第八章气体吸收 9/14
浙江大学本科生课程 化工原理 第八章 气体吸收 9/14 (2) 求解吸塔传质单元数N OG 1.2 150 0.6 300 = = = L m G S ( ) + − − − − = S y mx y mx S S N a a b a OG ln 1 1 1 ( ) 6.93 1.2 0.045 0.6 0.095 0 0.6 0.095 ln 1 1.2 1 1.2 1 = + − − − − = m N H H OG OG 1.01 6.93 7 = = = 解吸(脱吸)举例 ya xa L=150kmol/h ya =0.045 xa 7m 7m y=0.15x y=0.6x xb yb=0 yb=0.015 xb=0.095 G=300kmol/h G=1000kmol/h 吸 收 塔 解 吸 塔 (3) 若解吸气体流量减少为250kmol/h ,则吸收塔气体出口浓 度ya又为多少?(其余操作条件均不变,且气体流量变化时, 解吸塔H OG基本不变) 250kmol/h
解吸(脱吸)举例 解吸塔:因Hoc不变,故No不变 L=150kmolh tya J’、mG′0.6×250 吸 解 150 收 吸 NoG=6.93syb-mxb 塔 塔 7m 0.15 即693 0-0.6x Vb′=0 y a-0.6xb y=0015X5 250kmol/h G=1000kmol/h 解之得:y=0.524x(1) +s 1-S ya-ya 浙江大学本科生课程 化工原理 第八章气体吸收 10/14
浙江大学本科生课程 化工原理 第八章 气体吸收 10/14 1 150 0.6 250 = = = L m G S NOG = 6.93 1 0.6 0 0.6 6.93 − − − = a b b y x x 即 a xb 解之得: y = 0.524 (1) 解吸(脱吸)举例 解吸塔:因H OG不变,故N OG不变 − 1 − − = a b b b y m x y m x ( ) + − − − − = S y y y y S S N a a b a OG ln 1 1 1 ya xa L=150kmol/h ya =0.045 xa 7m 7m y=0.15x y=0.6x xb yb=0 yb=0.015 xb=0.095 G=300kmol/h G=1000kmol/h 吸 收 塔 解 吸 塔 250kmol/h