摘要:溶气气浮(DAF)是气浮的一种,它利用水在不同压力下溶解度不同的特性,对全部或部分待处理 (或处理后)的水进行加压并加气,增加水的空气溶解量,通入加过混凝剂的水中,在常压情况下释放,空 气析出形成小气泡,粘附在杂质絮粒上,造成絮粒整体密度小于水而上升,从而使固液分离 关键词:溶气气浮DAF脱气系统 溶气气浮(DAF)是气浮的一种,它利用水在不同压力下溶解度不同的特性,对全部或部分 待处理(或处理后)的水进行加压并加气,增加水的空气溶解量,通入加过混凝剂的水中,在 常压情况下释放,空气析出形成小气泡,粘附在杂质絮粒上,造成絮粒整体密度小于水而上 升,从而使固液分离。 溶气气浮(DAF)适用于处理低浊度、高色度、高有机物含量、低含油量、低表面活性物质 含量或具有富藻的水。相对于其它的气浮方式(详见附录1),它具有水力负荷高,池体紧 凑等优点。但是它的工艺复杂,电能消耗较大,空压机的噪音大等缺点也限制着它的应用 1分类(type) 根据不同的划分原则,DAF可以有不同的分类 1.1根据气泡从水中析出时所处压力的不同,可分为真空式气浮法与压力溶气气浮法两种 前者利用抽真空的方法在常压或加压下溶解空气,然后在负压下释放微气泡,供气浮使用 后者是在加压情况下,使空气强制溶于水中,然后突然减压,使溶解的气体从水中释放出来, 以微气泡形式粘附上絮粒,一起上浮 1.1.1真空式气浮池,虽然能耗低,气泡形成和气泡与絮粒的粘附较稳定;但气泡释放 量受限制:而且,一切设备部件,都要密封在气浮池内;气浮池的构造复杂;只适用于处理 污染物浓度不高的废水(不高于300mg/),因此实际应用不多 1.1.2压力溶气气浮法是目前国内外最常采用的方法,可选择的基本流程有全流程溶气 气浮法、部分溶气气浮法和部分回流溶气气浮法三种
摘要: 溶气气浮(DAF)是气浮的一种,它利用水在不同压力下溶解度不同的特性,对全部或部分待处理 (或处理后)的水进行加压并加气,增加水的空气溶解量,通入加过混凝剂的水中,在常压情况下释放,空 气析出形成小气泡,粘附在杂质絮粒上,造成絮粒整体密度小于水而上升,从而使固液分离。 关键词: 溶气气浮 DAF 脱气系统 溶气气浮(DAF)是气浮的一种,它利用水在不同压力下溶解度不同的特性,对全部或部分 待处理(或处理后)的水进行加压并加气,增加水的空气溶解量,通入加过混凝剂的水中,在 常压情况下释放,空气析出形成小气泡,粘附在杂质絮粒上,造成絮粒整体密度小于水而上 升,从而使固液分离。 溶气气浮(DAF)适用于处理低浊度、高色度、高有机物含量、低含油量、低表面活性物质 含量或具有富藻的水。相对于其它的气浮方式(详见附录 1),它具有水力负荷高,池体紧 凑等优点。但是它的工艺复杂,电能消耗较大,空压机的噪音大等缺点也限制着它的应用。 1 分类(type) 根据不同的划分原则,DAF 可以有不同的分类。 1.1 根据气泡从水中析出时所处压力的不同,可分为真空式气浮法与压力溶气气浮法两种。 前者利用抽真空的方法在常压或加压下溶解空气,然后在负压下释放微气泡,供气浮使用; 后者是在加压情况下,使空气强制溶于水中,然后突然减压,使溶解的气体从水中释放出来, 以微气泡形式粘附上絮粒,一起上浮。 1.1.1 真空式气浮池,虽然能耗低,气泡形成和气泡与絮粒的粘附较稳定;但气泡释放 量受限制;而且,一切设备部件,都要密封在气浮池内;气浮池的构造复杂;只适用于处理 污染物浓度不高的废水(不高于 300mg/l),因此实际应用不多。 1.1.2 压力溶气气浮法是目前国内外最常采用的方法,可选择的基本流程有全流程溶气 气浮法、部分溶气气浮法和部分回流溶气气浮法三种
1.1.2.1全流程溶气气浮法 全流程溶气气浮法是将全部废水用水泵加压,在溶气罐内,空气溶解于废水中,然后通过减 压阀将废水送入气浮池。流程图见图1。 的特点是:①溶气量大,增加了油粒或悬浮颗粒与气泡的接触机会:②在处理水量相同的 条件下,它较部分回流溶气气浮法所需的气浮池小。③全部废水经过压力泵,所需的压力泵 和溶气罐均较其他两种流程大,因此投资和运转动力消耗较大 1.1.2.2部分溶气气浮法 部分溶气气浮法是取部分废水加压和溶气,其余废水直接进入气浮池并在气浮池中与溶气废 水混合。 的特点是:①与全流程溶气气浮法所需的压力泵小,因此动力消耗低:②气浮池的大小与 全流程溶气气浮法相同,但较部分回流溶气气浮法小 1.1.2.3部分回流溶气气浮法 部分回流溶气气浮法是取一部分处理后的水回流,回流水加压和溶气,减压后进入气浮池, 与来自絮凝池的含油废水混合和气浮,流程见图2 它的特点是:①加压的水量少,动力消耗省:②气浮过程中不促进乳化;③矾花形成好,后 絮凝也少:④气浮池的容积较前两种流程大。 现代气浮理论认为:部分回流加压溶气气浮节约能源,能充分利用浮选(混凝)剂,处理效 果优于全加压溶气气浮流程。而回流比为50%时处理效果最佳,所以部分回流(回流比50%) 加压溶气气浮工艺是目前国内外最常采用的气浮法
1.1.2.1 全流程溶气气浮法 全流程溶气气浮法是将全部废水用水泵加压,在溶气罐内,空气溶解于废水中,然后通过减 压阀将废水送入气浮池。流程图见图 1。 它的特点是:①溶气量大,增加了油粒或悬浮颗粒与气泡的接触机会;②在处理水量相同的 条件下,它较部分回流溶气气浮法所需的气浮池小。③全部废水经过压力泵,所需的压力泵 和溶气罐均较其他两种流程大,因此投资和运转动力消耗较大。 1.1.2.2 部分溶气气浮法 部分溶气气浮法是取部分废水加压和溶气,其余废水直接进入气浮池并在气浮池中与溶气废 水混合。 它的特点是:①与全流程溶气气浮法所需的压力泵小,因此动力消耗低;②气浮池的大小与 全流程溶气气浮法相同,但较部分回流溶气气浮法小。 1.1.2.3 部分回流溶气气浮法 部分回流溶气气浮法是取一部分处理后的水回流,回流水加压和溶气,减压后进入气浮池, 与来自絮凝池的含油废水混合和气浮,流程见图 2。 它的特点是:①加压的水量少,动力消耗省;②气浮过程中不促进乳化;③矾花形成好,后 絮凝也少;④气浮池的容积较前两种流程大。 现代气浮理论认为:部分回流加压溶气气浮节约能源,能充分利用浮选(混凝)剂,处理效 果优于全加压溶气气浮流程。而回流比为 50%时处理效果最佳,所以部分回流(回流比 50%) 加压溶气气浮工艺是目前国内外最常采用的气浮法
6 ---出水 1一吸水井;2-水泵;一空压机 压力容气;5一容气释放器一气浮池 图力落气气浮法工艺流程 排口排 气浮接触 清水出口 回流水 图2部分回流溶气气浮法流程图 1.2根据气浮池中微气泡污泥层(床)有无过滤作用及水的不同流态分为:早期DAF、 普通DAF和紊流DAF。(具体内容见附录3) 2设计原理( design principal) DAF一般设置在生物处理单元之前,物理处理单元之后,习惯上将其归为物理处理单元。若 设为两级浮选,为了方便节约,平面布置时常将一、二级浮选池并列,一、二级浮选池是约 有500mm左右的液位差保证污水从一级浮选池流动到二级浮选池,而取消提升泵达到节能 效果。体现在竖向布置上,即在设计、施工时必须严格控制刮渣杋拖架(板)、可调节堰和除 渣槽顶的标高,这一点非常重要,是关键因素之一,否则会严重影响气浮效果(泡沫层无法 用机械方法撇除),这也正是必须采用可调节出水堰的原因所在
图 2 部分回流溶气气浮法流程图 1.2 根据气浮池中微气泡污泥层(床)有无过滤作用及水的不同流态分为:早期 DAF、 普通 DAF 和紊流 DAF。(具体内容见附录 3) 2 设计原理(design principal) DAF 一般设置在生物处理单元之前,物理处理单元之后,习惯上将其归为物理处理单元。若 设为两级浮选,为了方便节约,平面布置时常将一、二级浮选池并列,一、二级浮选池是约 有 500mm 左右的液位差保证污水从一级浮选池流动到二级浮选池,而取消提升泵达到节能 效果。体现在竖向布置上,即在设计、施工时必须严格控制刮渣机拖架(板)、可调节堰和除 渣槽顶的标高,这一点非常重要,是关键因素之一,否则会严重影响气浮效果(泡沫层无法 用机械方法撇除),这也正是必须采用可调节出水堰的原因所在
无机著醒 机M 自动气司 向动气阀 波环稀数 9 Pa 艺餐找 一个示* E判兴找 空气篮在 O计旋专装仪表 公压力表 一仅表引线 图2两级浮选池工艺流程图 DAF主要由空气饱和设备(也称压力溶气系统)、空气释放设备(也称溶气释放系统)和气 浮池(也称气浮分离系统)等组成。目前,溶气气浮工艺的设计和最佳操作的确定,需要依 靠中试和经验。以下,根据各种应用中总结出的经验,分别介绍各个组成部分的设计原理。 2.1压力溶气系统(包括压力溶气罐、空压机、水泵及其附属设备) 2.1.1溶气系统占整个气浮过程能量消耗的50%,溶气罐价值占工厂总基建投资的12% 因此优化溶气系统的设计对缩小气浮操作费用是很重要的。 溶气罐多为园筒形,立式布置,容积按废水停留时间25~3min计算,罐中可装设有隔板,瓷 环之类,也有用空罐的 因为溶气罐内水、气相混合,所以一般按压力容器进行设计,罐顶设自动排气阀或罐底设自 动减压阀平衡压力,罐内压力一般控制在0.45MPa左右为宜,据此可以确定提升泵、回流 泵和空压机的参数
图 2 两级浮选池工艺流程图 DAF 主要由空气饱和设备(也称压力溶气系统)、空气释放设备(也称溶气释放系统)和气 浮池(也称气浮分离系统)等组成。目前,溶气气浮工艺的设计和最佳操作的确定,需要依 靠中试和经验。以下,根据各种应用中总结出的经验,分别介绍各个组成部分的设计原理。 2.1 压力溶气系统(包括压力溶气罐、空压机、水泵及其附属设备) 2.1.1 溶气系统占整个气浮过程能量消耗的 50%,溶气罐价值占工厂总基建投资的 12%, 因此优化溶气系统的设计对缩小气浮操作费用是很重要的。 溶气罐多为园筒形,立式布置,容积按废水停留时间 25~3min 计算,罐中可装设有隔板,瓷 环之类,也有用空罐的。 因为溶气罐内水、气相混合,所以一般按压力容器进行设计,罐顶设自动排气阀或罐底设自 动减压阀平衡压力,罐内压力一般控制在 0.45MPa 左右为宜,据此可以确定提升泵、回流 泵和空压机的参数
在国外的设计资料和文献中,认为气水停留时间越长,溶气效率越高。这样就使得溶气罐的 体积显得庞大,停留时间有时长达3~5min。国内的研究证实了液膜阻力控制着溶气速率 认为停留时间越长,溶气效果越好的观念不符合实际,因此国内设计参数不同于国外,是以 预定的溶气效率为设计指标,以液相过流密度和液相总容量传质系数为参数。 所有研究都表明有填充床的溶气罐比没有填充床的有效,其效率最高可达到99%,但在实 际运行中,经常需对溶气罐进行内部检査,因而在很多溶气气浮工艺中常选用没有填充床的 系统,而且大部分无填充床的溶气罐常配有内部的或外部的喷射器以提高溶气效率。 2.1.2加压溶气法有两种进气方式,即泵前进气和泵后进气 第一种是泵前进气,流程图见图3。当空气吸入量小于空气在该温度下水中的饱和度时,由 水泵压水管引出一支管返回吸水管,在支管上安装水力喷射器,废水经过水力喷射器时造成 负压,将空气吸入与废水混合后,经吸水管、水泵送入溶气罐。这种方式省去了空压机,气 水混合效果好,但水泵必须采用自引方式进水,而且要保持lm以上的水头,其最大吸气量 不能大于水泵吸水量的10%,否则,水泵工作不稳定,破坏了水泵应当具有的真空度,会 产生气蚀现象 第二种是泵后进气,流程图见图4。当空气吸入量大于空气在该温度下水中的饱和度时,空 气通过空压机在水泵的出水管压入,但也不宜大于水泵吸水量的25%。这种方法使水泵工 作稳定,而且不必要求在正压下工作,但需要由空气压缩机供给空气。为了保证良好的溶气 效果,溶气罐的容积也比较大,一般需采用较复杂的填充式溶气罐
在国外的设计资料和文献中,认为气水停留时间越长,溶气效率越高。这样就使得溶气罐的 体积显得庞大,停留时间有时长达 3~5min。国内的研究证实了液膜阻力控制着溶气速率, 认为停留时间越长,溶气效果越好的观念不符合实际,因此国内设计参数不同于国外,是以 预定的溶气效率为设计指标,以液相过流密度和液相总容量传质系数为参数。 所有研究都表明有填充床的溶气罐比没有填充床的有效,其效率最高可达到 99%,但在实 际运行中,经常需对溶气罐进行内部检查,因而在很多溶气气浮工艺中常选用没有填充床的 系统,而且大部分无填充床的溶气罐常配有内部的或外部的喷射器以提高溶气效率。 2.1.2 加压溶气法有两种进气方式,即泵前进气和泵后进气。 第一种是泵前进气,流程图见图 3。当空气吸入量小于空气在该温度下水中的饱和度时,由 水泵压水管引出一支管返回吸水管,在支管上安装水力喷射器,废水经过水力喷射器时造成 负压,将空气吸入与废水混合后,经吸水管、水泵送入溶气罐。这种方式省去了空压机,气 水混合效果好,但水泵必须采用自引方式进水,而且要保持 lm 以上的水头,其最大吸气量 不能大于水泵吸水量的 10%,否则,水泵工作不稳定,破坏了水泵应当具有的真空度,会 产生气蚀现象。 第二种是泵后进气,流程图见图 4。当空气吸入量大于空气在该温度下水中的饱和度时,空 气通过空压机在水泵的出水管压入,但也不宜大于水泵吸水量的 25% 。这种方法使水泵工 作稳定,而且不必要求在正压下工作,但需要由空气压缩机供给空气。为了保证良好的溶气 效果,溶气罐的容积也比较大,一般需采用较复杂的填充式溶气罐
水射器 溶气罐 空 同流水A 浮设备 压缩空气 空压粗 回流水 溶气罐 水泵 一气浮设备 图3泵前进气流程图 图4泵后进气流程图 2.1.3空气注入量的调节是浮选操作的另一关键因素,一般随选择的溶气压力或回流比 而变。实验也表明出水质量仅依赖于引入系统的空气总量(气泡尺寸一致时),而与单独压力 或回流比无关。要根据污水水质、浮选(混凝)剂和减压释放器的类型经反复实践而定。 2.1.4溶气罐内水位高低是影响气浮效果的重要因素。水们南宁市,缩小了水气接触部分 的窖,溶气效果不好;水位太低则缺乏必要的缓冲水深,气体会穿过水层进入气浮设备形成 大气泡,气浮效果也不佳。推荐水位控制在罐内1/3~1/4左右 2.1.5溶气罐内的压力是影响气量的重要因素。一般情况下,压力高,则溶气多,在空 压机加气方式中,溶气罐内的压力是由空压机气压和水泵共同决定的。在正运转时,首先要 保证足够的水压,但水压和气压又要基本相当 在采用水射器加气的方式中,保证溶气罐压力的关键是采用合适的水泵,一般水泵压力应在 保证额定流量的前提下大于0.3Mρa,溶气罐压力调整可通过调节溶气罐出水阀、水泵出水 阀、回流控制阀进行。 2.1.6根据《中华人民共和国国家标准室外排水设计规范》第8.2.7条溶气罐的设计应 符合下列要求: 溶气罐工作压力宜采用300~500kPa(约为3~5kgf/am2)
图 3 泵前进气流程图 图 4 泵后进气流程图 2.1.3 空气注入量的调节是浮选操作的另一关键因素,一般随选择的溶气压力或回流比 而变。实验也表明出水质量仅依赖于引入系统的空气总量(气泡尺寸一致时),而与单独压力 或回流比无关。要根据污水水质、浮选(混凝)剂和减压释放器的类型经反复实践而定。 2.1.4 溶气罐内水位高低是影响气浮效果的重要因素。水们南宁市,缩小了水气接触部分 的窖,溶气效果不好;水位太低则缺乏必要的缓冲水深,气体会穿过水层进入气浮设备形成 大气泡,气浮效果也不佳。推荐水位控制在罐内 1/3~1/4 左右。 2.1.5 溶气罐内的压力是影响气量的重要因素。一般情况下,压力高,则溶气多,在空 压机加气方式中,溶气罐内的压力是由空压机气压和水泵共同决定的。在正运转时,首先要 保证足够的水压,但水压和气压又要基本相当。 在采用水射器加气的方式中,保证溶气罐压力的关键是采用合适的水泵,一般水泵压力应在 保证额定流量的前提下大于 0.3Mpa,溶气罐压力调整可通过调节溶气罐出水阀、水泵出水 阀、回流控制阀进行。 2.1.6 根据《中华人民共和国国家标准室外排水设计规范》第 8.2.7 条 溶气罐的设计应 符合下列要求: 一、溶气罐工作压力宜采用 300~500kPa(约为 3~5kgf/cm2);
、空气量以体积计,可按污水量5~10%计算; 污水在溶气罐内停留时间应根据罐的型式确定,一般宜为1~4min,罐内应有促进气水 充分混合的措施 四、采用部分回流的溶气罐宜选用动态式,并应有水位控制措施 2.1.7有应用中提到,增加一个精密空气稳流器,它的作用是使空气在进入溶气罐的喷头 前,确保压力平稳、均一。 回流比是指,当采用部分回流溶气气浮法时,进入溶气罐加压溶气的回流水量与处理水量的 比值。回流比一般为废水的25%~50%。但当污水水质较差,且污水水量不大时,可适当 加大回流比,以保证出水水质 2.2溶气释放系统(主要是释放头) 释放器是该系统的关键装置,它对气泡形成的大小、分布以及对气浮净水效果和运行费用均 有明显影响。目前被采用的释放器的释气效率可达992%。 2.2.1以前的研究认为,释气泡的大小与溶气压力有关,低压时形成大气泡居多,不利 于气浮。国内最新研究认为:溶气水在减压消能时气泡的释放规律与气泡在静水中的状况不 同;低压时大气泡的出现归咎于释放器不良所致。除了要释放出大量稳定的微小气泡,关键 是要如何防止堵塞 目前国内外采用不同类型的释放器,有简单阀门式、针型阀式以及专用释放器(专利)。溶 气释放器的专利产品很多其中效果较好的一般都有以下特点:在喷嘴处有一个瞬间的压降; 在释放器的入口处水流方向会突然改变(常为90°):释放器口径不超过25mm,水在释放 器中的停留时间<15ms:离开释放器的水流速度逐渐变小;离开释放器的水体会与其前面
二、空气量以体积计,可按污水量 5~10%计算; 三、污水在溶气罐内停留时间应根据罐的型式确定,一般宜为 1~4min,罐内应有促进气水 充分混合的措施; 四、采用部分回流的溶气罐宜选用动态式,并应有水位控制措施。 2.1.7 有应用中提到,增加一个精密空气稳流器,它的作用是使空气在进入溶气罐的喷头 前,确保压力平稳、均一。 回流比是指,当采用部分回流溶气气浮法时,进入溶气罐加压溶气的回流水量与处理水量的 比值。回流比一般为废水的 25%~50%。但当污水水质较差,且污水水量不大时,可适当 加大回流比,以保证出水水质。 2.2 溶气释放系统(主要是释放头) 释放器是该系统的关键装置,它对气泡形成的大小、分布以及对气浮净水效果和运行费用均 有明显影响。目前被采用的释放器的释气效率可达 99.2%。 2.2.1 以前的研究认为,释气泡的大小与溶气压力有关,低压时形成大气泡居多,不利 于气浮。国内最新研究认为:溶气水在减压消能时气泡的释放规律与气泡在静水中的状况不 同;低压时大气泡的出现归咎于释放器不良所致。除了要释放出大量稳定的微小气泡,关键 是要如何防止堵塞。 目前国内外采用不同类型的释放器,有简单阀门式、针型阀式以及专用释放器(专利)。溶 气释放器的专利产品很多,其中效果较好的一般都有以下特点:在喷嘴处有一个瞬间的压降; 在释放器的入口处水流方向会突然改变(常为 90°);释放器口径不超过 2.5mm,水在释放 器中的停留时间<1.5ms;离开释放器的水流速度逐渐变小;离开释放器的水体会与其前面
挡板发生撞击。任何释放器都不可能只产生微气泡,而一般是产生直径在40~70um之间 的气泡,一些大气泡的产生是不可避免的,尽管这些大气泡的存在会降低系统的运行效率 2.2.2根据《中华人民共和国国家标准室外排水设计规范》第8.2.8条溶气释放器的选 用应根据含油污水水质、处理流程和释放器性能确定。 2.3气浮分离系统(气浮池构件) 气浮分离系统的功能是确保一定容积来完成微气泡群与水中杂质的充分混合、接触、粘附以 及带气絮粒与清水的分离。 2.3.1为了提高气浮的处理效果,往往向废水中加入混凝剂或气浮剂,投加量因水质不同 而异,一般由试验确定。对于铝类絮凝剂,通过提高搅拌强度均可使出水浊度进一步降低。 为保证浮选(混凝)剂的混凝作用,浮选池进水端宜设静态管道混合器和反应室,反应室有效 容积约按废水(进水量与回流量的和)停留时间10分钟计算,一般分为三间,迷宫式布置 且每间设搅拌机提高混凝效果,每间中的速度梯度常常是相同的。絮凝池(也即反应室)设 计最好提供活塞流状态(紊流堆动状态),可以确保较好的气浮效果。 2.3.2溶气气浮池的最大建议尺寸可达145m2,相应的产水能力为2900~4350m3/h 单位面积的产水能力至少提高了一倍。溶气气浮池的深度从1.5m增加到50m,且池型由 长方形向正方形发展,长宽比在(1.2~2):1之间。目前运行良好的溶气气浮池的长度最大 可达12m,但宽度被限制为8.5m,这主要是因为机械刮渣机的最大跨度为85m 污水在气浮池内的停留时间一般取30~40mn,工作水深为15~25m,长宽比不小于4, 表面负荷5~10m3/m2h 若停留时间太短,水流的冲击力大,浮选罐中的污水牌较强的紊流状态,这样不但不利于气 泡与絮体的粘附,反而会将部分已粘附在气泡上的絮体打碎;另外,由于紊流和较短的反应
一挡板发生撞击。任何释放器都不可能只产生微气泡,而一般是产生直径在 40~70μm之间 的气泡,一些大气泡的产生是不可避免的,尽管这些大气泡的存在会降低系统的运行效率。 2.2.2 根据《中华人民共和国国家标准室外排水设计规范》第 8.2.8 条 溶气释放器的选 用应根据含油污水水质、处理流程和释放器性能确定。 2.3 气浮分离系统(气浮池构件) 气浮分离系统的功能是确保一定容积来完成微气泡群与水中杂质的充分混合、接触、粘附以 及带气絮粒与清水的分离。 2.3.1 为了提高气浮的处理效果,往往向废水中加入混凝剂或气浮剂,投加量因水质不同 而异,一般由试验确定。对于铝类絮凝剂,通过提高搅拌强度均可使出水浊度进一步降低。 为保证浮选(混凝)剂的混凝作用,浮选池进水端宜设静态管道混合器和反应室,反应室有效 容积约按废水(进水量与回流量的和)停留时间 10 分钟计算,一般分为三间,迷宫式布置, 且每间设搅拌机提高混凝效果,每间中的速度梯度常常是相同的。絮凝池(也即反应室)设 计最好提供活塞流状态(紊流堆动状态),可以确保较好的气浮效果。 2.3.2 溶气气浮池的最大建议尺寸可达 145m2,相应的产水能力为 2900~4350m3 / h, 单位面积的产水能力至少提高了一倍。溶气气浮池的深度从 1.5m 增加到 5.0m,且池型由 长方形向正方形发展,长宽比在(1.2~2):1 之间。目前运行良好的溶气气浮池的长度最大 可达 12m,但宽度被限制为 8.5m,这主要是因为机械刮渣机的最大跨度为 8.5m。 污水在气浮池内的停留时间一般取 30~40min,工作水深为 15~25m,长宽比不小于 4, 表面负荷 5~10m3 /m2 •h。 若停留时间太短,水流的冲击力大,浮选罐中的污水牌较强的紊流状态,这样不但不利于气 泡与絮体的粘附,反而会将部分已粘附在气泡上的絮体打碎;另外,由于紊流和较短的反应
时间,而使投加的部分混凝剂未反应完全时就随出水流出,致使出水中悬浮固体的去除率降 低,甚至出现负增长的趋势。 2.3.3气浮池分2个区:接触区和分离区。 2.3.3.1设计接触区时,要注意控制絮凝水的上升流速,避免短流、偏流,不致在上浮 过程中被水流剪脱已粘附的气泡而影响后续分离效果。通常情况下接触区的上升流速以控制 在10~20mm/s为宜高度以15~2.0m为宜,在这种流速和高度下,既保证了絮粒和微气泡 的接触时间,又不会造成絮粒因上浮时间过长而破坏或下沉。 合理地布置释放器,使释放水的作用范围遍及全区,能充分、及时地使微气泡下絮粒接触。 2.3.3.2分离区选择分离速度时,应有利于带气絮粒上浮。对于絮粒大、密度小、不易 破碎的带气絮粒一般采取较大的分离速度,反之取较小值。分离区的流速宜在1~3mm/s, 流速过小会造成大絮粒因拥挤而沉淀,流速过大会造成带气絮粒和清水的分界面向下延伸, 从而造成絮粒随水流出、水质下降 对浓度大、浮渣多,在固液分离时形成拥挤上浮现象的应减小上浮速度,否则浮渣层太厚会 造成落渣,或因分离区容积过小而影响分离效果 选取集水系统时,尽可能做到集水均匀,不让上浮较慢的细小带气絮粒流出池外。为此,应 避免短流、快部滞流、碰壁回流等不良现象出现。 当溶气气浮池的水力负荷>10mm2h时,很容易出现气浮出水携带气泡进入后续滤池的 情况,气泡会存在于滤池的上层。虽然有人发现滤池中气泡的存在会有利于水中颗粒的去除, 但是它会导致滤池水头损失的急剧升高,从而使滤池运行周期显著缩短,因此应该避免滤池 进水中气泡的存在,所以在大幅度提高溶气气浮池水力负荷的同时,必须设置脱气系统(具 体内容见附录2)以保证工艺的正常运行
时间,而使投加的部分混凝剂未反应完全时就随出水流出,致使出水中悬浮固体的去除率降 低,甚至出现负增长的趋势。 2.3.3 气浮池分 2 个区:接触区和分离区。 2.3.3.1 设计接触区时,要注意控制絮凝水的上升流速,避免短流、偏流,不致在上浮 过程中被水流剪脱已粘附的气泡而影响后续分离效果。通常情况下接触区的上升流速以控制 在 10~20mm/s 为宜,高度以 1.5~2.0m 为宜,在这种流速和高度下,既保证了絮粒和微气泡 的接触时间,又不会造成絮粒因上浮时间过长而破坏或下沉。 合理地布置释放器,使释放水的作用范围遍及全区,能充分、及时地使微气泡下絮粒接触。 2.3.3.2 分离区选择分离速度时,应有利于带气絮粒上浮。对于絮粒大、密度小、不易 破碎的带气絮粒一般采取较大的分离速度,反之取较小值。分离区的流速宜在 1~3mm/s, 流速过小会造成大絮粒因拥挤而沉淀,流速过大会造成带气絮粒和清水的分界面向下延伸, 从而造成絮粒随水流出、水质下降。 对浓度大、浮渣多,在固液分离时形成拥挤上浮现象的应减小上浮速度,否则浮渣层太厚会 造成落渣,或因分离区容积过小而影响分离效果。 选取集水系统时,尽可能做到集水均匀,不让上浮较慢的细小带气絮粒流出池外。为此,应 避免短流、快部滞流、碰壁回流等不良现象出现。 当溶气气浮池的水力负荷>10 m3 /m2 •h 时,很容易出现气浮出水携带气泡进入后续滤池的 情况,气泡会存在于滤池的上层。虽然有人发现滤池中气泡的存在会有利于水中颗粒的去除, 但是它会导致滤池水头损失的急剧升高,从而使滤池运行周期显著缩短,因此应该避免滤池 进水中气泡的存在,所以在大幅度提高溶气气浮池水力负荷的同时,必须设置脱气系统(具 体内容见附录 2)以保证工艺的正常运行
安装简易,灵巧的刮渣设备,以便刮渣时不致扰动浮渣层而产生落渣,影响出水水质 2.3.4国内外气浮池的设计参数变化范围很大,我国主要采用以下参数: 接触区: 停留时间 >2.0min 表面负荷率36~72m3/m2h 分离区: 表面负荷率 72~10.8m/m2h 2.3.5根据《中华人民共和国国家标准室外排水设计规范》第8.29条气浮池可采用矩 形或圆形。矩形气浮池的设计应符合下列要求: 气浮池应设置反应段,反应时间宜为10~15min 每格池宽不应大于45m,长宽比宜为3~4 、有效水深宜为2.0~25m,超高不应小于04m 四、污水在气浮池分离段停留时间不宜大于10h 五、污水在池内的水平流速不宜大于10mm/s 六、气浮池端部应设置集沫槽 七、池内应设刮沫机,刮沫机的移动速度宜为1~5m/min 2.3.6气浮模型研究得出了一些新概念,如饮用水气浮处理需针尖大小(数十微米)的絮体。 pH对絮体形成和气泡粘附一样重要。在最佳pH时颗粒的乙电位接近于0或为负值,可采用 较高的溢流流速度(≤15m/h)。气浮池的最佳设计是接触区和分离区呈长窄形状的活塞流反
安装简易,灵巧的刮渣设备,以便刮渣时不致扰动浮渣层而产生落渣,影响出水水质。 2.3.4 国内外气浮池的设计参数变化范围很大,我国主要采用以下参数: 接触区: 停留时间 > 2.0min 表面负荷率 36~72 m3 /m2 •h 分离区: 表面负荷率 7.2~10.8 m3 /m2 •h 2.3.5 根据《中华人民共和国国家标准室外排水设计规范》第 8.2.9 条 气浮池可采用矩 形或圆形。矩形气浮池的设计应符合下列要求: 一、气浮池应设置反应段,反应时间宜为 10~15min; 二、每格池宽不应大于 4.5m,长宽比宜为 3~4; 三、有效水深宜为 2.0~2.5m,超高不应小于 0.4m; 四、污水在气浮池分离段停留时间不宜大于 1.0h; 五、污水在池内的水平流速不宜大于 10mm/s; 六、气浮池端部应设置集沫槽; 七、池内应设刮沫机,刮沫机的移动速度宜为 1~5m/min。 2.3.6 气浮模型研究得出了一些新概念,如饮用水气浮处理需针尖大小(数十微米)的絮体。 pH 对絮体形成和气泡粘附一样重要。在最佳 pH 时,颗粒的 ζ 电位接近于 0 或为负值,可采用 较高的溢流流速度(≤15m/h)。气浮池的最佳设计是接触区和分离区呈长窄形状的活塞流反