Woodhead Publishing Series in Composites Science and Engineering: Number 47 Natural fibre composites Materials,processes and properties Edited by Alma Hodzic and Robert Shanks WP WOODHEAD PUBLISHING Oxford Cambridge Philadelphia New Delhi Woodhead Publishing Limited,2014
© Woodhead Publishing Limited, 2014 Woodhead Publishing Series in Composites Science and Engineering: Number 47 Natural fi bre composites Materials, processes and properties Edited by Alma Hodzic and Robert Shanks Oxford Cambridge Philadelphia New Delhi
Contents Contributor contact details Woodhead Publishing Series in Composites Science and Engineering Part I Natural fibre reinforcements 1 Wood fibres as reinforcements in natural fibre composites:structure,properties,processing and applications 3 D.DAI and M.FAN,Brunel University,UK 1.1 Introduction 3 1.2 Wood fibres:nature and behaviour 5 1.3 Modification of wood fibres for composites 15 1.4 Matrices(binders)of wood fibre composites 22 1.5 Process techniques of wood fibre composites 27 1.6 Properties of wood fibre composites 32 1.7 Applications of wood fibre composites 34 1.8 Future trends 41 1.9 References 43 2 Chemistry and structure of cellulosic fibres as reinforcements in natural fibre composites 66 R.A.SHANKS,RMIT University,Australia 2.1 Introduction 66 2.2 Glucose monomer 67 2.3 Glucose biopolymerization 70 2.4 Cellulose structure 71 2.5 Chemical and solubility properties of cellulose 73 2.6 Sources of cellulose 75 2.7 Separation of cellulose 75 Woodhead Publishing Limited,2014
© Woodhead Publishing Limited, 2014 v Contents Contributor contact details xi Woodhead Publishing Series in Composites Science and Engineering xv Part I Natural fi bre reinforcements 1 1 Wood fi bres as reinforcements in natural fi bre composites: structure, properties, processing and applications 3 D. Dai and M. Fan, Brunel University, UK 1.1 Introduction 3 1.2 Wood fi bres: nature and behaviour 5 1.3 Modifi cation of wood fi bres for composites 15 1.4 Matrices (binders) of wood fi bre composites 22 1.5 Process techniques of wood fi bre composites 27 1.6 Properties of wood fi bre composites 32 1.7 Applications of wood fi bre composites 34 1.8 Future trends 41 1.9 References 43 2 Chemistry and structure of cellulosic fi bres as reinforcements in natural fi bre composites 66 R. A. Shanks, RMIT University, Australia 2.1 Introduction 66 2.2 Glucose monomer 67 2.3 Glucose biopolymerization 70 2.4 Cellulose structure 71 2.5 Chemical and solubility properties of cellulose 73 2.6 Sources of cellulose 75 2.7 Separation of cellulose 75
vi Contents 2.8 Purification of cellulose 76 2.9 Cellulose polymorphism 2.10 Chemical modification of cellulose 78 2.11 Preparation of nano-cellulose 79 2.12 Processing of cellulose 79 2.13 Applications of cellulose fibres 80 2.14 Conclusions 81 2.15 References 81 2.16 Appendix:abbreviations 83 3 Creating hierarchical structures in cellulosic fibre reinforced polymer composites for advanced performance 84 K.-Y.LEE and A.BISMARCK,University of Vienna,Austria and Imperial College London,UK 3.1 Introduction 84 3.2 Creating hierarchical structures in (ligno)cellulosic fibre reinforced composite materials 86 3.3 Surface microfibrillation of (ligno)cellulosic fibres 87 3.4 Creating hierarchical structures in renewable composites by incorporating microfibrillated cellulose (MFC) into the matrix 90 3.5 Coating of (ligno)cellulosic fibres with bacterial cellulose 91 3.6 Conclusions and future trends 99 3.7 Acknowledgements 100 3.8 References 100 4 Recycled polymers in natural fibre-reinforced polymer composites 103 M.A.AL-MAADEED and S.LABIDI,Qatar University,Qatar 4.1 Introduction 103 4.2 Fibre reinforcements in recycled composites 104 4.3 Processes for adding natural fibre reinforcements to composites 108 4.4 Improving the mechanical properties of recycled composites using natural fibre reinforcements 109 4.5 Applications of recycled polymer composites with natural fibre reinforcements 111 4.6 Conclusions and future trends 112 Woodhead Publishing Limited,2014
vi Contents © Woodhead Publishing Limited, 2014 2.8 Purifi cation of cellulose 76 2.9 Cellulose polymorphism 77 2.10 Chemical modifi cation of cellulose 78 2.11 Preparation of nano-cellulose 79 2.12 Processing of cellulose 79 2.13 Applications of cellulose fi bres 80 2.14 Conclusions 81 2.15 References 81 2.16 Appendix: abbreviations 83 3 Creating hierarchical structures in cellulosic fi bre reinforced polymer composites for advanced performance 84 K.-Y. Lee and A. Bismarck, University of Vienna, Austria and Imperial College London, UK 3.1 Introduction 84 3.2 Creating hierarchical structures in (ligno)cellulosic fi bre reinforced composite materials 86 3.3 Surface microfi brillation of (ligno)cellulosic fi bres 87 3.4 Creating hierarchical structures in renewable composites by incorporating microfi brillated cellulose (MFC) into the matrix 90 3.5 Coating of (ligno)cellulosic fi bres with bacterial cellulose 91 3.6 Conclusions and future trends 99 3.7 Acknowledgements 100 3.8 References 100 4 Recycled polymers in natural fi bre-reinforced polymer composites 103 M. A. Al-Maadeed and S. Labidi, Qatar University, Qatar 4.1 Introduction 103 4.2 Fibre reinforcements in recycled composites 104 4.3 Processes for adding natural fi bre reinforcements to composites 108 4.4 Improving the mechanical properties of recycled composites using natural fi bre reinforcements 109 4.5 Applications of recycled polymer composites with natural fi bre reinforcements 111 4.6 Conclusions and future trends 112
Contents vii 4.7 References 112 4.8 Appendix:abbreviations 114 5 Electrospun cellulosic fibre-reinforced composite materials 115 D.S.LE CoRRE,University of Canterbury,New Zealand, N.TUCKER,The NZ Institute for Plant and Food Research Ltd, New Zealand and M.P.STAIGER,University of Canterbury, New Zealand 5.1 Introduction 115 5.2 Electrospinning of non-derivatised and derivatised cellulosic fibres 118 5.3 Electrospun cellulosic fibres via polymer blends 135 5.4 Electrospun nanocomposite fibres 138 5.5 Mechanical properties of electrospun fibres and mats 146 5.6 Cellulose nanofibre-reinforced polymer composites 147 5.7 Future trends 149 5.8 References 150 Part ll Processing of natural fibre composites 159 6 Ethical practices in the processing of green composites 161 C.BAILLIE,The University of Western Australia,Australia and E.FEINBLATT,Waste for Life,USA 6.1 Introduction 161 6.2 Social impact and ethical practice 162 6.3 Case study:Waste for Life waste management model 164 6.4 Conclusions 172 6.5 References 173 7 Manufacturing methods for natural fibre composites 176 J.SUMMERSCALES and S.GROVE,Plymouth University,UK 71 Introduction 176 72 Fibre reinforcements 177 1.3 Reinforcement forms 180 74 Bio-based polymer matrices 183 75 Composites manufacturing processes 187 @Woodhead Publishing Limited,2014
Contents vii © Woodhead Publishing Limited, 2014 4.7 References 112 4.8 Appendix: abbreviations 114 5 Electrospun cellulosic fi bre-reinforced composite materials 115 D. S. Le Corre, University of Canterbury, New Zealand, N. Tucker, The NZ Institute for Plant and Food Research Ltd, New Zealand and M. P. Staiger, University of Canterbury, New Zealand 5.1 Introduction 115 5.2 Electrospinning of non-derivatised and derivatised cellulosic fi bres 118 5.3 Electrospun cellulosic fi bres via polymer blends 135 5.4 Electrospun nanocomposite fi bres 138 5.5 Mechanical properties of electrospun fi bres and mats 146 5.6 Cellulose nanofi bre-reinforced polymer composites 147 5.7 Future trends 149 5.8 References 150 Part II Processing of natural fi bre composites 159 6 Ethical practices in the processing of green composites 161 C. Baillie, The University of Western Australia, Australia and E. Feinblatt, Waste for Life, USA 6.1 Introduction 161 6.2 Social impact and ethical practice 162 6.3 Case study: Waste for Life waste management model 164 6.4 Conclusions 172 6.5 References 173 7 Manufacturing methods for natural fi bre composites 176 J. Summerscales and S. Grove, Plymouth University, UK 7.1 Introduction 176 7.2 Fibre reinforcements 177 7.3 Reinforcement forms 180 7.4 Bio-based polymer matrices 183 7.5 Composites manufacturing processes 187
vii Contents 7.6 Key parameters for successful processing of natural fibre composites 189 77 Manufacturing techniques for natural fibre-reinforced polymer matrix composites 201 7.8 Case studies:automotive,building and construction, and marine applications 204 79 Conclusions 205 710 References 205 8 Compression and injection molding techniques for natural fiber composites 216 Y.W.LEONG,Institute of Materials Research and Engineering,Republic of Singapore and S.THITITHANASARN, K.YAMADA and H.HAMADA,Kyoto Institute of Technology,Japan 8.1 Introduction 216 8.2 Emerging compression and injection molding technologies in the production of natural fiber composites 218 8.3 Processing natural fiber composites at high temperatures 227 8.4 Conclusions 229 8.5 References 230 9 Thermoset matrix natural fibre-reinforced composites 233 A.CROSKY and N.SOATTHIYANON,University of New South Wales,Australia and Cooperative Research Centre for Advanced Composite Structures,Australia,D.Ruys, St Andrew's Cathedral School,Australia and S.MEATHERALL and S.PorrER,Composites Innovation Centre,Canada 9.1 Introduction 233 9.2 Natural fibres used in thermoset matrix composites 234 9.3 Thermoset matrix types 234 9.4 Fabrication of thermoset matrix composites 238 9.5 Mechanical properties of synthetic resin composites 240 9.6 Bioderived resin composites 258 9.7 Applications of thermoset matrix natural fibre composites 263 9.8 Future trends 265 9.9 Sources of further information and advice 265 9.10 References 265 Woodhead Publishing Limited,2014
viii Contents © Woodhead Publishing Limited, 2014 7.6 Key parameters for successful processing of natural fi bre composites 189 7.7 Manufacturing techniques for natural fi bre-reinforced polymer matrix composites 201 7.8 Case studies: automotive, building and construction, and marine applications 204 7.9 Conclusions 205 7.10 References 205 8 Compression and injection molding techniques for natural fi ber composites 216 Y. W. Leong, Institute of Materials Research and Engineering, Republic of Singapore and S. Thitithanasarn, K. Yamada and H. Hamada, Kyoto Institute of Technology, Japan 8.1 Introduction 216 8.2 Emerging compression and injection molding technologies in the production of natural fi ber composites 218 8.3 Processing natural fi ber composites at high temperatures 227 8.4 Conclusions 229 8.5 References 230 9 Thermoset matrix natural fi bre-reinforced composites 233 A. Crosky and N. Soatthiyanon, University of New South Wales, Australia and Cooperative Research Centre for Advanced Composite Structures, Australia, D. Ruys, St Andrew’s Cathedral School, Australia and S. Meatherall and S. Potter, Composites Innovation Centre, Canada 9.1 Introduction 233 9.2 Natural fi bres used in thermoset matrix composites 234 9.3 Thermoset matrix types 234 9.4 Fabrication of thermoset matrix composites 238 9.5 Mechanical properties of synthetic resin composites 240 9.6 Bioderived resin composites 258 9.7 Applications of thermoset matrix natural fi bre composites 263 9.8 Future trends 265 9.9 Sources of further information and advice 265 9.10 References 265
Contents Part Ill Testing and properties 271 10 Non-destructive testing(NDT)of natural fibre composites:acoustic emission technique 273 F.SARASINI and C.SANTULLI,University of Rome 'La Sapienza,Italy 10.1 Introduction 273 10.2 Using the acoustic emission(AE)technique in practice 279 10.3 Assessing results 285 10.4 Applications of AE 287 10.5 Future trends 295 10.6 Conclusions 296 10.7 Sources of further information and advice 296 10.8 References 297 11 High strain rate testing of natural fiber composites 303 W.KIM and A.ARGENTO,University of Michigan-Dearborn,USA 11.1 Introduction 303 11.2 Materials 305 11.3 Test methods 306 11.4 Results and discussion 308 11.5 Applications and future trends 314 11.6 Acknowledgments 317 11.7 References 318 12 Performance of natural fiber composites under dynamic loading 323 H.MD AKIL and M.H.ZAMRI,Universiti Sains Malaysia(USM),Malaysia 12.1 Introduction 323 12.2 Natural fibers and natural fiber composites 325 12.3 Dynamic properties of natural fiber composites 326 12.4 Dynamic mechanical testing of natural fiber composites 327 12.5 Testing in practice:the example of pultruded natural fiber reinforced composites 330 12.6 Dynamic testing of composites 331 12.7 Performance of natural fiber reinforced composites under dynamic loading 335 @Woodhead Publishing Limited,2014
Contents ix © Woodhead Publishing Limited, 2014 Part III Testing and properties 271 10 Non-destructive testing (NDT) of natural fi bre composites: acoustic emission technique 273 F. Sarasini and C. Santulli, University of Rome ‘La Sapienza’, Italy 10.1 Introduction 273 10.2 Using the acoustic emission (AE) technique in practice 279 10.3 Assessing results 285 10.4 Applications of AE 287 10.5 Future trends 295 10.6 Conclusions 296 10.7 Sources of further information and advice 296 10.8 References 297 11 High strain rate testing of natural fi ber composites 303 W. Kim and A. Argento, University of Michigan-Dearborn, USA 11.1 Introduction 303 11.2 Materials 305 11.3 Test methods 306 11.4 Results and discussion 308 11.5 Applications and future trends 314 11.6 Acknowledgments 317 11.7 References 318 12 Performance of natural fi ber composites under dynamic loading 323 H. Md Akil and M. H. Zamri, Universiti Sains Malaysia (USM), Malaysia 12.1 Introduction 323 12.2 Natural fi bers and natural fi ber composites 325 12.3 Dynamic properties of natural fi ber composites 326 12.4 Dynamic mechanical testing of natural fi ber composites 327 12.5 Testing in practice: the example of pultruded natural fi ber reinforced composites 330 12.6 Dynamic testing of composites 331 12.7 Performance of natural fi ber reinforced composites under dynamic loading 335
头 Contents 12.8 Future trends 341 12.9 Acknowledgments 341 12.10 References 341 13 The response of natural fibre composites to impact damage:a case study 345 H.GHASEMNEJAD and A.ABOUTORABI,Kingston University London,UK 13.1 Introduction 345 13.2 Mechanical characterization 348 13.3 Specimen preparation 349 13.4 Charpy impact test 353 13.5 Experimental results 354 13.6 Conclusion 362 13.7 References 363 14 Natural fibre composites in a marine environment 365 M.P.ANSELL,University of Bath,UK 14.1 Introduction 365 14.2 Properties and environmental impact of natural versus synthetic fibres 366 14.3 Natural fibre composites(NFCs)and moisture uptake 369 14.4 Geometrical considerations for plant fibres in NFCs 370 14.5 Marine applications of plant fibre composites 371 14.6 Conclusions and future trends 372 14.7 Sources of further information and advice 372 14.8 References 373 Index 375 Woodhead Publishing Limited,2014
x Contents © Woodhead Publishing Limited, 2014 12.8 Future trends 341 12.9 Acknowledgments 341 12.10 References 341 13 The response of natural fi bre composites to impact damage: a case study 345 H. Ghasemnejad and A. Aboutorabi, Kingston University London, UK 13.1 Introduction 345 13.2 Mechanical characterization 348 13.3 Specimen preparation 349 13.4 Charpy impact test 353 13.5 Experimental results 354 13.6 Conclusion 362 13.7 References 363 14 Natural fi bre composites in a marine environment 365 M. P. Ansell, University of Bath, UK 14.1 Introduction 365 14.2 Properties and environmental impact of natural versus synthetic fi bres 366 14.3 Natural fi bre composites (NFCs) and moisture uptake 369 14.4 Geometrical considerations for plant fi bres in NFCs 370 14.5 Marine applications of plant fi bre composites 371 14.6 Conclusions and future trends 372 14.7 Sources of further information and advice 372 14.8 References 373 Index 375
Contributor contact details (*main contact) GPO Box 2476 Melbourne,VIC 3001,Australia Editors E-mail:robert.shanks@rmit.edu.au A.Hodzic Faculty of Engineering Chapter 3 The University of Sheffield K.-Y.Lee and A.Bismarck* Mappin Street Institute of Materials Chemistry Sheffield S1 3JD,UK and Research E-mail:a.hodzic@sheffield.ac.uk University of Vienna Waehringerstr.42 R.A.Shanks 1090 Wien,Austria Applied Sciences RMIT University and GPO Box 2476 Polymer and Composite Melbourne,VIC 3001,Australia Engineering (PaCE)Group E-mail:robert.shanks@rmit.edu.au Department of Chemical Engineering Chapter 1 Imperial College London D.Dai and M.Fan* South Kensington Campus London SW7 2AZ.UK Department of Civil Engineering Brunel University E-mail:alexander.bismarck@univie. Uxbridge UB8 3PH.UK ac.at;a.bismarck@imperial.ac.uk E-mail:mizi.fan@brunel.ac.uk Chapter 4 Chapter 2 M.A.Al-Maadeed*and S.Labidi R.A.Shanks(retired) Center for Advanced Materials Applied Sciences Qatar University RMIT University P.O.Box 2713 Doha,Qatar E-mail:m.alali@qu.edu.qa xi @Woodhead Publishing Limited,2014
© Woodhead Publishing Limited, 2014 xi (* = main contact) Editors A. Hodzic Faculty of Engineering The University of Sheffi eld Mappin Street Sheffi eld S1 3JD, UK E-mail: a.hodzic@sheffi eld.ac.uk R. A. Shanks Applied Sciences RMIT University GPO Box 2476 Melbourne, VIC 3001, Australia E-mail: robert.shanks@rmit.edu.au Chapter 1 D. Dai and M. Fan* Department of Civil Engineering Brunel University Uxbridge UB8 3PH, UK E-mail: mizi.fan@brunel.ac.uk Chapter 2 R. A. Shanks (retired) Applied Sciences RMIT University GPO Box 2476 Melbourne, VIC 3001, Australia E-mail: robert.shanks@rmit.edu.au Chapter 3 K.-Y. Lee and A. Bismarck* Institute of Materials Chemistry and Research University of Vienna Waehringerstr. 42 1090 Wien, Austria and Polymer and Composite Engineering (PaCE) Group Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ, UK E-mail: alexander.bismarck@univie. ac.at; a.bismarck@imperial.ac.uk Chapter 4 M. A. Al-Maadeed* and S. Labidi Center for Advanced Materials Qatar University P.O. Box 2713 Doha, Qatar E-mail: m.alali@qu.edu.qa Contributor contact details
xii Contributor contact details Chapter 5 School of Marine Science and Engineering D.S.Le Corre and M.P Staiger* Plymouth University Department of Mechanical Plymouth PL4 8AA.UK Engineering University of Canterbury E-mail:J.Summerscales@plymouth Private Bag 4800 ac.uk Christchurch 8140,New Zealand Chapter 8 E-mail:mark.staiger@canterbury. Y.W.Leong* ac.nz Synthesis Integration Capability N.Tucker Group Institute of Materials Research and The NZ Institute for Plant and Food Research Ltd Engineering 3 Research Link Gerald Street,Lincoln Private Bag 4704 Singapore 117602,Republic of Christchurch 8140,New Zealand Singapore E-mail:leongyw@imre.a-star.edu.sg Chapter 6 S.Thitithanasarn,K.Yamada C.Baillie* and H.Hamada Faculty of Engineering,Computing Advanced Fibro Science and Mathematics Kyoto Institute of Technology The University of Western Australia Matsugasaki,Sakyo-ku 35 Stirling Highway 606-8585 Kyoto,Japan Crawley 6009 Perth,Australia Chapter 9 E-mail:caroline.baillie@uwa.edu.au A.Crosky*and E.Feinblatt N.Soatthiyanon Waste for Life School of Materials Science and 76 Winkler Rd Engineering Hankins,NY 12741,USA University of New South Wales Sydney,NSW 2052,Australia E-mail:eric@wasteforlife.org and Chapter 7 Cooperative Research Centre for J.Summerscales*and Advanced Composite Structures S.Grove Moorebank,NSW 2170,Australia Advanced Composites Manufacturing Centre E-mail:a.crosky@unsw.edu.au Woodhead Publishing Limited,2014
xii Contributor contact details © Woodhead Publishing Limited, 2014 Chapter 5 D. S. Le Corre and M.P Staiger* Department of Mechanical Engineering University of Canterbury Private Bag 4800 Christchurch 8140, New Zealand E-mail: mark.staiger@canterbury. ac.nz N. Tucker The NZ Institute for Plant and Food Research Ltd Gerald Street, Lincoln Private Bag 4704 Christchurch 8140, New Zealand Chapter 6 C. Baillie* Faculty of Engineering, Computing and Mathematics The University of Western Australia 35 Stirling Highway Crawley 6009 Perth, Australia E-mail: caroline.baillie@uwa.edu.au E. Feinblatt Waste for Life 76 Winkler Rd Hankins, NY 12741, USA E-mail: eric@wasteforlife.org Chapter 7 J. Summerscales* and S. Grove Advanced Composites Manufacturing Centre School of Marine Science and Engineering Plymouth University Plymouth PL4 8AA, UK E-mail: J.Summerscales@plymouth. ac.uk Chapter 8 Y. W. Leong* Synthesis & Integration Capability Group Institute of Materials Research and Engineering 3 Research Link Singapore 117602, Republic of Singapore E-mail: leongyw@imre.a-star.edu.sg S. Thitithanasarn , K. Yamada and H. Hamada Advanced Fibro Science Kyoto Institute of Technology Matsugasaki, Sakyo-ku 606-8585 Kyoto, Japan Chapter 9 A. Crosky* and N. Soatthiyanon School of Materials Science and Engineering University of New South Wales Sydney, NSW 2052, Australia and Cooperative Research Centre for Advanced Composite Structures Moorebank, NSW 2170, Australia E-mail: a.crosky@unsw.edu.au
Contributor contact details xiii D.Ruys Engineering Campus St Andrew's Cathedral School Universiti Sains Malaysia(USM) Sydney,NSW 2000,Australia 14300,Nibong Tebal S.Meatherall and Penang,Malaysia S.Potter E-mail:hazizan@eng.usm.my Composites Innovation Centre M.H.Zamri Winnipeg,Manitoba,Canada School of Materials and Mineral R3P 0Z6 Resources Engineering Chapter 10 Engineering Campus Universiti Sains Malaysia(USM) F.Sarasini*and 14300,Nibong Tebal C.Santulli Penang,Malaysia Department of Chemical Engineering Materials Chapter 13 Environment University of Rome 'La Sapienza' H.Ghasemnejad*and Via Eudossiana 18 A.Aboutorabi 00184 Rome,Italy Faculty of Science,Engineering and Computing(SEC) E-mail:fabrizio.sarasini@uniromal. Kingston University London it:carlosantullil41@gmail.com Roehampton Vale London SW15 3DW,UK Chapter 11 E-mail:Hessam.Ghasemnejad@ W.Kim and kingston.ac.uk;A.Aboutorabi@ A.Argento* kingston.ac.uk Department of Mechanical Engineering Chapter 14 University of Michigan-Dearborn M.P.Ansell Dearborn,MI 48128.USA BRE Centre for Innovative E-mail:aargento@umich.edu; Construction Materials wskim@umich.edu Department of Mechanical Engineering Chapter 12 University of Bath H.Md Akil* Bath BA2 7AY,UK School of Materials and Mineral E-mail:m.p.ansell@bath.ac.uk Resources Engineering and Cluster for Polymer Composites (CPC),Science and Engineering Research Centre (SERC) @Woodhead Publishing Limited,2014
Contributor contact details xiii © Woodhead Publishing Limited, 2014 D. Ruys St Andrew’s Cathedral School Sydney, NSW 2000, Australia S. Meatherall and S. Potter Composites Innovation Centre Winnipeg, Manitoba, Canada R3P 0Z6 Chapter 10 F. Sarasini* and C. Santulli Department of Chemical Engineering Materials Environment University of Rome ‘La Sapienza’ Via Eudossiana 18 00184 Rome, Italy E-mail: fabrizio.sarasini@uniroma1. it; carlosantulli141@gmail.com Chapter 11 W. Kim and A. Argento* Department of Mechanical Engineering University of Michigan-Dearborn Dearborn, MI 48128, USA E-mail: aargento@umich.edu; wskim@umich.edu Chapter 12 H. Md Akil* School of Materials and Mineral Resources Engineering and Cluster for Polymer Composites (CPC), Science and Engineering Research Centre (SERC) Engineering Campus Universiti Sains Malaysia (USM) 14300, Nibong Tebal Penang, Malaysia E-mail: hazizan@eng.usm.my M. H. Zamri School of Materials and Mineral Resources Engineering Engineering Campus Universiti Sains Malaysia (USM) 14300, Nibong Tebal Penang, Malaysia Chapter 13 H. Ghasemnejad* and A. Aboutorabi Faculty of Science, Engineering and Computing (SEC) Kingston University London Roehampton Vale London SW15 3DW, UK E-mail: Hessam.Ghasemnejad@ kingston.ac.uk; A.Aboutorabi@ kingston.ac.uk Chapter 14 M. P. Ansell BRE Centre for Innovative Construction Materials Department of Mechanical Engineering University of Bath Bath BA2 7AY, UK E-mail: m.p.ansell@bath.ac.uk