
Bending of Thin Plates
Bending of Thin Plates

OutlineIntroductionElementary Beam TheoryAssumptions Formulation in terms of DeflectionInternal Force per Unit Length Relations between Internal Force and Stress Differential Element Equilibrium - Alternative ApproachBoundary ConditionsBoundaryEquationSchemeFourier Method Summary2
Outline • Introduction • Elementary Beam Theory • Assumptions • Formulation in terms of Deflection • Internal Force per Unit Length • Relations between Internal Force and Stress • Differential Element Equilibrium – Alternative Approach • Boundary Conditions • Boundary Equation Scheme • Fourier Method • Summary 2

Introduction: One dimension (thexthickness) is significantlysmaller than the other twot/2t/2(1/8-1/5) > t/b > (1/80-1Middle Surface1/100)Middle Surface: z = O0: Only subjected to transversloads.: If a plate is only subjected to longitudinal loads, theproblem is reduced to plane stress state. The bending problem of thin plates is analyzed withstrategies similar to those of elastic beams.3
• One dimension (the thickness) is significantly smaller than the other two. (1/8-1/5) > t/b > (1/80- 1/100) • Middle Surface: z = 0. • Only subjected to transvers loads. Introduction • If a plate is only subjected to longitudinal loads, the problem is reduced to plane stress state. • The bending problem of thin plates is analyzed with strategies similar to those of elastic beams. 3 t/2 t/2 x y z O Middle Surface b

Review of the Elementary Beam Theory: Plane sections normal to the longitudinal axis of thebeam remain planar.Only uniaxial longitudinal stress is assumed.3MdWEIEIMqdx?2dxdx4
Review of the Elementary Beam Theory • Plane sections normal to the longitudinal axis of the beam remain planar. • Only uniaxial longitudinal stress is assumed. 2 2 2 2 2 2 d d d , d d d w w EI M EI q x x x 4

Assumptions2Straight lines normal to the middle surface112Oremain straight and the same lengthB11/2AStress components acting on planesparallel to the middle surface aresignificantly smaller than othercomponents. The corresponding strain cantherefore be neglectedow0=w = w(x, y)OOzuowOwOu10=U2OzOxaxOzowavavOw-0=I8zy2Ozazdyya.-v(ax1+0Discard:8=E2G2G5
Assumptions 0 ( , ) 1 0 2 1 0 2 ( ) 1 1 Discard: , , . 2 2 z z x z y z x y z zx zx zy zy w w w x y z u w u w z x z x w v v w y z z y E G G 5 t/2 t/2 t/2 • Straight lines normal to the middle surface remain straight and the same length. • Stress components acting on planes parallel to the middle surface are significantly smaller than other components. The corresponding strain can therefore be neglected

AssumptionsConstitutive relations-voPEE2G The middle surface of the plate is not strained duringbendingOu02=0=OxCuav= 0ay=0(v). 二=0ovOu02Ox=0ay=06
• Constitutive relations • The middle surface of the plate is not strained during bending. 1 1 1 ( ), ( ), . 2 x x y y y x xy xy E E G Assumptions 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 x z z z y z z z x y z z u x u v v y v u x y 6

Governing Equation in terms of Deflection w(x, y): Longitudinal displacements formulated in terms of thevertical deflection w = w(x,y)auOwOwOwz+f(x,y)u:uZOzaxOxax二UavawOwOw.yyVZ-+tOzayayay=0(u).-0fi(x, y) = 0((v):=0 = 0f,(x,y)= 0Longitudinal strains in terms of wa?wQuawOvawdyduos88LaxavaxayOxoya7
1 ( , ) u w w u z f x y z x x v w z y 2 ( , ) w v z f x y y 0 1 0 2 ( ) 0 ( , ) 0 ( ) 0 ( , ) 0 z z w u z x w v z y u f x y v f x y Governing Equation in terms of Deflection w(x, y) • Longitudinal displacements formulated in terms of the vertical deflection w = w(x,y) • Longitudinal strains in terms of w 2 2 2 2 2 1 , , 2 x y xy u w v w v u w z z z x x y y x y x y 7

Governing Equation in terms of Deflection w(x, y): Longitudinal stresses in terms of wa"wa"wEzEa1-v2ay?+Voax?oS1-1awa?wEEz+V8aS0ax?Qy?1-v21-EawEzt.8xvT(1 +v)xy1+vaxyTransvers shear stresses in terms of wa3watyxataxEzEzaOtxa'waa1 - v21 - v2x3OzOxoy2axOzaxay2Ot.daOt.atya"wa"waEzEzZ1xyOzayaxOzOyox?1-v2Oy3oy1 - v2IntegrateW.r.t z:8
2 2 2 2 2 2 2 2 2 2 2 2 2 ( ) 1 1 ( ) 1 1 (1 ) 1 x x x y y y x y xy xy x y Ez w w E x y E Ez w w y x E Ez w x y • Longitudinal stresses in terms of w • Transvers shear stresses in terms of w 3 3 2 2 3 2 2 3 3 2 2 3 2 2 1 1 1 1 Integrate w.r.t zx x y x z x zy y xy z y Ez w w Ez w z x y z x x y x Ez w w Ez w z y x z y y x y z Governing Equation in terms of Deflection w(x, y) 8

Governing Equation in terms of Deflection w(x, y)Transvers shear stresses in terms of wEz?Ez?aaV?w+ F,(x,y)V?w + F(x, y),2(1 -v2) Qy2(1 -v2) αx: Applying the BCs at the top/bottom surface12Ea2WTX(t-x)=±1/2 = 042(1 - vOx(t,)=±/2 = 0Ea14T42(1 - vayTransvers normal stress in terms of watyet2Eot.ag.YVOzax2(1-v)4ayE12V4w+ F(x,y)↓a2(1 - v49
2 2 2 2 1 2 2 2 , 2(1 ) 2(1 , ) ( ) ( , ) zx zy Ez Ez w F x y F x x y w y • Transvers shear stresses in terms of w • Applying the BCs at the top/bottom surface 2 2 2 2 2 2 2 2 2 2 ( ) 0 2(1 ) 4 ( ) 0 2(1 ) 4 z x zx z t zy z t z y E t z w x E t z w y • Transvers normal stress in terms of w 2 2 4 2 2 3 4 2 3 2(1 ) 4 2(1 ) 4 3 ( , ) y z z x z z E t z w z F x y x y E t z z w Governing Equation in terms of Deflection w(x, y) 9

Governing Equation in terms of Deflection w(x, y): Applying the BCs at the bottom surface(α.)=/2 = 0E=9.2(1-EIO26(1 - vFurther applying the BCs at the top surfaceEt3(o. ) =-1/2 = -q=12(1 - v2)Et3DV4w=q,D12(1 - v2)D:Flexural Rigidity10
t t/2 2 2 3 3 4 2 2 4 2 ( ) 0 1 2(1 ) 4 2 3 8 6(1 ) 2 z z t z z E t t t z z w E t z z t w • Applying the BCs at the bottom surface • Further applying the BCs at the top surface 3 4 2 2 3 4 2 ( ) 12(1 ) , 12(1 ) z z t E t q w q E t D w q D Governing Equation in terms of Deflection w(x, y) • D: Flexural Rigidity 10