第15卷第2期 智能系统学报 Vol.15 No.2 2020年3月 CAAI Transactions on Intelligent Systems Mar.2020 D0:10.11992/tis.201904052 网络出版地址:http:/kns.cnki.net/kcms/detail/23.1538.TP.20191205.1011.004html 鸽群交互模式切换模型及其同步性分析 邱华鑫2,段海滨3,范彦铭4,邓亦敏',魏晨1 (1.北京航室航天大学自动化科学与电气工程学院,北京100083:2.中国空问技术研究院钱学森空间技术实 验室,北京100094:3.鹏城实验室,深圳518000:4.中国航空工业集团公司沈阳飞机设计研究所,辽宁沈阳 110035) 摘要:以原鸽为研究对象,归纳出其群体归巢机制中的双模式决策原则、模式切换原则与优势个体原则。模 拟双模式决策原则设定双模式邻居集合与对齐权重,模拟模式切换原则设定基于群体轨迹曲率的切换规则,模 拟优势个体原则设定高层级个体集合,进而建立鸽群交互模式切换模型。基于LaSalle不变集理论给出鸽群系 统以无碰撞、同步编队抵近目标的条件。采用蒙特卡罗仿真分析不同参数对模型特性的影响,即不同个体数 目、高层级个体数目以及最大速率均可保证模型的同步性。 关键词:鸽群;群体智能;群集运动:异构群体;层级交互模式;平等交互模式;交互模式切换;同步性 中图分类号:TP13:V249.122文献标志码:A文章编号:1673-4785(2020)020334-10 中文引用格式:邱华鑫,段海滨,范彦铭,等.鸽群交互模式切换模型及其同步性分析IJ.智能系统学报,2020,15(2): 334-343. 英文引用格式:QIU Huaxin,,DUAN Haibin,.FAN Yanming,.etal.Pigeon flock interaction pattern switching model and its syn- chronization analysis[Jl.CAAI transactions on intelligent systems,2020,15(2):334-343. Pigeon flock interaction pattern switching model and its synchronization analysis QIU Huaxin'2,DUAN Haibin,FAN Yanming',DENG Yimin',WEI Chen' (1.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100083,China;2.QIAN Xuesen Laborat- ory of Space Technology,China Academy of Space Technology,Beijing 100094,China;3.Peng Cheng Laboratory,Shenzhen 518000,China;4.Shenyang Aircraft Design and Research Institute,Aviation Industry Corporation of China,Shenyang 110035, China) Abstract:Taking Columba livia as the research object,we summarized the dual-mode decision-making,mode-switch- ing,and dominant individual principles in the homing mechanism of pigeons to establish a pigeon flock interaction pat- tern switching model.In the model,the neighbor set and alignment weight in dual mode were set by mimicking the dual- mode decision-making principle,the switching rule based on the curvature of the group trajectory was set by mimicking the mode-switching principle,and the collection of higher-rank individuals was set by mimicking the dominant individu- al principle.On the basis of LaSalle's invariant set theory,the conditions under which the pigeon flock can approach the target with collision-free and synchronous formations are given.Monte Carlo simulation was used to analyze the influ- ence of different parameters on the model characteristics.Results show that the synchronization of the model can be en- sured by setting the appropriate number of individuals,number of higher-rank individuals,and maximum velocity. Keywords:pigeon flock;swarm intelligence;collective motion;heterogeneous group;hierarchical interaction pattern; egalitarian interaction pattern;interaction pattern switching;synchronization 收稿日期:2019-04-22.网络出版日期:2019-12-05 鸟类群体的有组织飞行(organized flight)大致 基金项目:国家自然科学基金项目(61803011,91948204):中国 可分为两种方式":线性编队(line formation)和群 博士后科学基金资助项目. 通信作者:段海滨.E-mail:hbduan@buaa.edu.cn 集编队(cluster formation)。水禽等大型鸟类主要
DOI: 10.11992/tis.201904052 网络出版地址: http://kns.cnki.net/kcms/detail/23.1538.TP.20191205.1011.004.html 鸽群交互模式切换模型及其同步性分析 邱华鑫1,2,段海滨1,3,范彦铭4 ,邓亦敏1 ,魏晨1 (1. 北京航空航天大学 自动化科学与电气工程学院,北京 100083; 2. 中国空间技术研究院 钱学森空间技术实 验室,北京 100094; 3. 鹏城实验室,深圳 518000; 4. 中国航空工业集团公司 沈阳飞机设计研究所,辽宁 沈阳 110035) 摘 要:以原鸽为研究对象,归纳出其群体归巢机制中的双模式决策原则、模式切换原则与优势个体原则。模 拟双模式决策原则设定双模式邻居集合与对齐权重,模拟模式切换原则设定基于群体轨迹曲率的切换规则,模 拟优势个体原则设定高层级个体集合,进而建立鸽群交互模式切换模型。基于 LaSalle 不变集理论给出鸽群系 统以无碰撞、同步编队抵近目标的条件。采用蒙特卡罗仿真分析不同参数对模型特性的影响,即不同个体数 目、高层级个体数目以及最大速率均可保证模型的同步性。 关键词:鸽群;群体智能;群集运动;异构群体;层级交互模式;平等交互模式;交互模式切换;同步性 中图分类号:TP13; V249.122 文献标志码:A 文章编号:1673−4785(2020)02−0334−10 中文引用格式:邱华鑫, 段海滨, 范彦铭, 等. 鸽群交互模式切换模型及其同步性分析 [J]. 智能系统学报, 2020, 15(2): 334–343. 英文引用格式:QIU Huaxin, DUAN Haibin, FAN Yanming, et al. Pigeon flock interaction pattern switching model and its synchronization analysis[J]. CAAI transactions on intelligent systems, 2020, 15(2): 334–343. Pigeon flock interaction pattern switching model and its synchronization analysis QIU Huaxin1,2 ,DUAN Haibin1,3 ,FAN Yanming4 ,DENG Yimin1 ,WEI Chen1 (1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China; 2. QIAN Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China; 3. Peng Cheng Laboratory, Shenzhen 518000, China; 4. Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China, Shenyang 110035, China) Abstract: Taking Columba livia as the research object, we summarized the dual-mode decision-making, mode-switching, and dominant individual principles in the homing mechanism of pigeons to establish a pigeon flock interaction pattern switching model. In the model, the neighbor set and alignment weight in dual mode were set by mimicking the dualmode decision-making principle, the switching rule based on the curvature of the group trajectory was set by mimicking the mode-switching principle, and the collection of higher-rank individuals was set by mimicking the dominant individual principle. On the basis of LaSalle’s invariant set theory, the conditions under which the pigeon flock can approach the target with collision-free and synchronous formations are given. Monte Carlo simulation was used to analyze the influence of different parameters on the model characteristics. Results show that the synchronization of the model can be ensured by setting the appropriate number of individuals, number of higher-rank individuals, and maximum velocity. Keywords: pigeon flock; swarm intelligence; collective motion; heterogeneous group; hierarchical interaction pattern; egalitarian interaction pattern; interaction pattern switching; synchronization 鸟类群体的有组织飞行 (organized flight) 大致 可分为两种方式[1] :线性编队 (line formation) 和群 集编队 (cluster formation)。水禽等大型鸟类主要 收稿日期:2019−04−22. 网络出版日期:2019−12−05. 基金项目:国家自然科学基金项目 (61803011,91948204); 中国 博士后科学基金资助项目. 通信作者:段海滨. E-mail:hbduan@buaa.edu.cn. 第 15 卷第 2 期 智 能 系 统 学 报 Vol.15 No.2 2020 年 3 月 CAAI Transactions on Intelligent Systems Mar. 2020
第2期 邱华鑫,等:鸽群交互模式切换模型及其同步性分析 ·335· 采用线性编队方式飞行,研究此种方式的研究者 体,或为最近固定数量的邻居个体,即服从固定 主要关注线性编队的成因。鸽子、乌鹩等小型鸟 邻居范围(fixed neighborhood region,FNR)模型或 类主要采用群集编队方式飞行,研究此种方式的 固定邻居数量(fixed number of neighbors,.FNN)模 研究者主要关注群集同步的机理。 型。层级交互模式下,鸟类个体跟随具有较高飞 采用群集编队方式飞行的鸟类其单体智能水 行领导层级的其他个体进行飞行。为深入研究自 平并不高,但无论群集规模大小,可实现群体同 由飞行中鸽群两种交互模式的切换关系,Zhang 步且迅速的飞行转向。在大型群集编队方面, 等u8-11基于Nagy等m记录的鸽群自由飞行实验 Ballerini等通过立体测量和计算机视觉技术重 数据,发现鸽群实际上切换采用上述两种交互模 建同一群体中2600只欧椋鸟(European starlings/, 式,即当原鸽个体沿平滑轨迹运动时,其飞行方 Sturnus Vulgaris)的三维位置后发现鸟群个体间交 向趋向跟随邻居平均,而当突然转弯或轨迹曲折 互依赖于拓扑距离(topological distance),而并非大 时,趋向跟随领导者。 多数理论模型所假设的模式距离(metric distance)), 至此,可归纳原鸽归巢机制如下。1)双模式 即个体与固定数量(6~7只)的邻居进行交互,而 决策原则:鸽群在迁徙过程中,群体飞行决策采 非与固定模式距离内的邻居进行交互。在小型群 用平等交互模式或层级交互模式,平等交互模式 集编队方面,Nagy等忉通过高精度微型全球定位 下,原鸽个体的飞行决策彼此间相互影响,层级 系统(global positioning system,GPS)跟踪记录 交互模式下,存在至少一个原鸽个体,会对其交 l0只原鸽(Columba Livia/homing pigeon/domestic 互范围内的其他原鸽个体的飞行决策产生较大影 pigeon)的飞行,采用统计物理学方法以系列相关 响。2)模式切换原则:异构原鸽群体的模式切换 函数定义成对交互中的领导关系,进而发现一个 与鸽群轨迹曲率呈现一定的关联,当鸽群飞行状 清晰的层级制度:鸽群内个体的平均空间位置与 态不够平稳时,原鸽个体采用层级交互模式,反 其在层级网络中的飞行领导等级(flight leadership 之采用平等交互模式。3)优势个体原则:异构原 rank)密切相关。从进化角度来说,层级交互模式 鸽群体内存在可能因某些因素导致的某个或某几 (hierarchical interaction pattern)比之于平等交互模 个优势原鸽个体,当鸽群处于层级交互模式时, 式(egalitarian interaction pattern)信息传递更快,效 非优势原鸽个体会偏重依赖该类优势个体进行飞 率更高⑧:此外,具有特定社会结构的层级交互模 行决策。 式可补偿个体导航误差,提高群体导航精度例:需 本文在上述原鸽归巢机制分析基础上,建立 要说明的是,在不考虑领导者切换的条件下,层 鸽群交互模式切换模型,模型对应原鸽归巢机制 级网络可简化为双层领导跟随结构,即仅存在唯 中的双模式决策原则定义了平等交互模式与层级 一领导者,其余跟随者均以特定时延复制领导者 交互模式下的邻居集合与对齐权重,对应模式切 运动,该结构可节约个体运动和通信消耗。与 换原则定义了由群体轨迹曲率触发的交互模式切 仅由攻击和觅食等个体体能特征决定的啄序等 换规则,对应优势个体原则将可获知目标位置和 级(pecking order rank)不同,飞行领导等级是个 速度信息的原鸽个体视为高层级个体。基于LaS- 体不断优化自身利益的结果,亦是领导、学习以 alle不变集理论2o给出鸽群系统可避免碰撞、实 及个人能力综合作用的结果2。个体速度31 现速度渐近同步、相对位置趋于期望并抵达目标 路径保真度(route fidelity)以及飞行经验is-1m均 的条件。以序参量衡量鸽群同步性,以序参量衡 可能决定成对领导关系,进而影响个体飞行领导 量鸽群同步性,采用蒙特卡罗仿真测试个体数 层级:个体受前方邻居的影响往往高于后方邻 目、高层级个体数目、个体最大速率对鸽群抵达 居,即飞行速度慢的个体需要牺牲方向决策权来 目标时间以及序参量的影响。 跟随快速个体;路径差异越小表示路径保真度越 1鸽群交互模式切换模型 高,单飞时保真度高的个体在成对飞行时较易成 为领导者;具有更多飞行经验的鸽子以较大概率 考虑N只原鸽在三维欧式空间中飞行,每 可处于在飞行领导层级中较高的层级。 个原鸽个体可视作一个质点,其动力学模型如 综上所述,以群集编队飞行时,鸟群内部存在 式(1)所示: 平等交互和层级交互两种模式。平等交互模式 (1) 下,鸟类个体交互范围或为固定半径内的邻居个 =y,i=1,2…N mvi=ui
采用线性编队方式飞行,研究此种方式的研究者 主要关注线性编队的成因。鸽子、乌鸫等小型鸟 类主要采用群集编队方式飞行,研究此种方式的 研究者主要关注群集同步的机理[2-5]。 采用群集编队方式飞行的鸟类其单体智能水 平并不高,但无论群集规模大小,可实现群体同 步且迅速的飞行转向。在大型群集编队方面, Ballerini 等 [6] 通过立体测量和计算机视觉技术重 建同一群体中 2 600 只欧椋鸟 (European starlings/ Sturnus Vulgaris) 的三维位置后发现鸟群个体间交 互依赖于拓扑距离 (topological distance),而并非大 多数理论模型所假设的模式距离 (metric distance), 即个体与固定数量 (6~7 只) 的邻居进行交互,而 非与固定模式距离内的邻居进行交互。在小型群 集编队方面,Nagy 等 [7] 通过高精度微型全球定位 系统 (global positioning system,GPS) 跟踪记录 10 只原鸽 (Columba Livia/homing pigeon/domestic pigeon) 的飞行,采用统计物理学方法以系列相关 函数定义成对交互中的领导关系,进而发现一个 清晰的层级制度:鸽群内个体的平均空间位置与 其在层级网络中的飞行领导等级 (flight leadership rank) 密切相关。从进化角度来说,层级交互模式 (hierarchical interaction pattern) 比之于平等交互模 式 (egalitarian interaction pattern) 信息传递更快,效 率更高[8] ;此外,具有特定社会结构的层级交互模 式可补偿个体导航误差,提高群体导航精度[9] ;需 要说明的是,在不考虑领导者切换的条件下,层 级网络可简化为双层领导跟随结构,即仅存在唯 一领导者,其余跟随者均以特定时延复制领导者 运动,该结构可节约个体运动和通信消耗[10]。与 仅由攻击和觅食等个体体能特征决定的啄序等 级 (pecking order rank) 不同[11] ,飞行领导等级是个 体不断优化自身利益的结果,亦是领导、学习以 及个人能力综合作用的结果[12]。个体速度[13-14] 、 路径保真度 (route fidelity)[15] 以及飞行经验[16-17] 均 可能决定成对领导关系,进而影响个体飞行领导 层级:个体受前方邻居的影响往往高于后方邻 居,即飞行速度慢的个体需要牺牲方向决策权来 跟随快速个体;路径差异越小表示路径保真度越 高,单飞时保真度高的个体在成对飞行时较易成 为领导者;具有更多飞行经验的鸽子以较大概率 可处于在飞行领导层级中较高的层级。 综上所述,以群集编队飞行时,鸟群内部存在 平等交互和层级交互两种模式。平等交互模式 下,鸟类个体交互范围或为固定半径内的邻居个 体,或为最近固定数量的邻居个体,即服从固定 邻居范围 (fixed neighborhood region,FNR) 模型或 固定邻居数量 (fixed number of neighbors,FNN) 模 型。层级交互模式下,鸟类个体跟随具有较高飞 行领导层级的其他个体进行飞行。为深入研究自 由飞行中鸽群两种交互模式的切换关系,Zhang 等 [18-19] 基于 Nagy 等 [7] 记录的鸽群自由飞行实验 数据,发现鸽群实际上切换采用上述两种交互模 式,即当原鸽个体沿平滑轨迹运动时,其飞行方 向趋向跟随邻居平均,而当突然转弯或轨迹曲折 时,趋向跟随领导者。 至此,可归纳原鸽归巢机制如下。1) 双模式 决策原则:鸽群在迁徙过程中,群体飞行决策采 用平等交互模式或层级交互模式,平等交互模式 下,原鸽个体的飞行决策彼此间相互影响,层级 交互模式下,存在至少一个原鸽个体,会对其交 互范围内的其他原鸽个体的飞行决策产生较大影 响。2) 模式切换原则:异构原鸽群体的模式切换 与鸽群轨迹曲率呈现一定的关联,当鸽群飞行状 态不够平稳时,原鸽个体采用层级交互模式,反 之采用平等交互模式。3) 优势个体原则:异构原 鸽群体内存在可能因某些因素导致的某个或某几 个优势原鸽个体,当鸽群处于层级交互模式时, 非优势原鸽个体会偏重依赖该类优势个体进行飞 行决策。 本文在上述原鸽归巢机制分析基础上,建立 鸽群交互模式切换模型,模型对应原鸽归巢机制 中的双模式决策原则定义了平等交互模式与层级 交互模式下的邻居集合与对齐权重,对应模式切 换原则定义了由群体轨迹曲率触发的交互模式切 换规则,对应优势个体原则将可获知目标位置和 速度信息的原鸽个体视为高层级个体。基于 LaSalle 不变集理论[20] 给出鸽群系统可避免碰撞、实 现速度渐近同步、相对位置趋于期望并抵达目标 的条件。以序参量衡量鸽群同步性,以序参量衡 量鸽群同步性,采用蒙特卡罗仿真测试个体数 目、高层级个体数目、个体最大速率对鸽群抵达 目标时间以及序参量的影响。 1 鸽群交互模式切换模型 N i 考虑 只原鸽在三维欧式空间中飞行,每 个原鸽个体 可视作一个质点,其动力学模型如 式(1)所示: { x˙i = vi miv˙i = ui ,i = 1,2,··· ,N (1) 第 2 期 邱华鑫,等:鸽群交互模式切换模型及其同步性分析 ·335·
·336· 智能系统学报 第15卷 式中:x,,,∈RD1分别为原鸽个体i的位置向 -K∑.9D 量、速度向量以及控制输入,D为上述3个向量 jEN 的维数;w,2≤Vax,Vx>0为原鸽个体最大速率; -KTVx VT (x;-xTll) iEUpper m,为原鸽个体i的质量。 -K心w∑ 定义鸽群中可获知目标T位置和速度信息的 -k∑.D (6) 原鸽个体为高层级个体(即优势个体),即原鸽个 jeN 体iEUpper,.其中Upper为高层级原鸽个体集合, i座Jpper 其可观测目标标识符infor,=l;余下原鸽个体为低 -K EN\Upper +w 层级个体,可观测目标标识符infora=0,其中原鸽 jENnUpper 个体i=l,2,…,N且iUpper.。原鸽个体依据鸽 式中:>0、KT>0、Kw>0分别为编队控制增 群飞行状态选用不同交互模式:交互模式标识符 益、目标控制增益以及对齐控制增益,=-y,为 mode,=0,表示原鸽个体处于平等交互模式;交互 原鸽个体i相对于原鸽个体j的速度向量。定义 模式标识符mode,=l,表示原鸽个体处于层级交互 对齐权重w如式(7)所示: 模式。当群体轨迹曲率较小时,原鸽个体处于 1,mode;=0 平等交互模式,当群体轨迹曲率较大时,原鸽 w= w',mode;=1 (7) 个体处于层级交互模式,交互模式标识符mode, 式中w≥1为层级交互模式下对齐权重。编队势 与群体轨迹曲率间的关系如式(2)所示: 场函数定义为 0 R<Kswitch mode,=1,≥K (2) (Raca)Ln0Rae 式中Kwh为轨迹曲率模式切换阈值。由式(2) 1 可知,当Kwh=0,个体始终处于层级交互模式; -ll /R-R) 当K=o,个体始终处于平等交互模式。 好(eD R.comm 原鸽个体在不同交互模式下,其交互范围并 Rdesire - 不相同。首先,定义平等交互模式下原鸽个体 (Rdesire)In- Rcomm.-Rdesire 的邻居集合N如式(3)所示: Resire≤kl≤Rcomm {jlxl≤Rom-Rmj≠i,k=0 (8) l≤Romm, 式中Ree为个体间期望距离。定义目标势场函 N(t)= jeN(-i),j≠i 数如式(9)所示: or ull≤Rcomm.-Rn k=1,2,…N :-xTl j年N(t-),j≠i 2 lx-xl≥Ra (3) 0 0≤lx,-xl<R 式中:t为采样时间点,即满足t+1=+ts:j=1,2,…, (9) N,x=x-x为原鸽个体i相对于原鸽个体j的位 式中:x灯为目标位置向量;为个体抵达目标的 置向量;Rmm为平等交互模式下最大通信距离, 最大容许误差。 Rn∈(O,Rmm)为添加个体连接延迟距离。并定义 层级交互模式下原鸽个体ⅰ的邻居集合W如式 2模型同步性理论分析 (4)所示: 本节旨在从理论分析角度对鸽群交互模式切 N={l≤Rmj≠ij=1,2,…,N}(4) 换模型同步性展开研究。首先定义鸽群平等交互 式中Rm≥R.m为层级交互模式下最大通信距 模式下的有向图g=(V,8),若原鸽个体jeN, 离。则原鸽个体i的当前邻居集合N可表示为 则有序点对(,)属于边集8。定义鸽群拉普拉斯 N,mode:=0 矩阵Lw=[∈Rxw如式(I0)所示: N= (5) N,mode;=1 -1,jEN 原鸽个体i依赖邻居交互信息以及目标信息 l={0,j年N,j≠i (10) (仅高层级个体可获知),求取控制输入,具体如 IN,j=i 式(6): 式中4为集合A中元素数目
xi , vi ,ui ∈ R D×1 i D ∥vi∥2 ⩽ Vmax Vmax > 0 mi i 式中: 分别为原鸽个体 的位置向 量、速度向量以及控制输入, 为上述 3 个向量 的维数; , 为原鸽个体最大速率; 为原鸽个体 的质量。 T i ∈ Upper Upperinfori=1 infori=0 i = 1,2,··· ,N i 0 K T > 0 K V > 0 vi j=vi −vj i j w 式中: 、 、 分别为编队控制增 益、目标控制增益以及对齐控制增益, 为 原鸽个体 相对于原鸽个体 的速度向量。定义 对齐权重 如式(7)所示: w= { 1, modei=0 w ′ , modei= 1 (7) w ′ ⩾ 1 V f i j 式中 为层级交互模式下对齐权重。编队势 场函数 定义为 V f i j( xi j ) = 1 2 xi j 2 −(Rdesire) 2Ln xi j ,0 ⩽ xi j ⩽ Rdesire 1 2 Rdesire R 1 comm. − xi j / ( R 1 comm. −Rdesire) 2 − (Rdesire) 2 ln Rdesire R 1 comm. − xi j R1 comm. −Rdesire , Rdesire ⩽ xi j ⩽ R 1 comm. (8) Rdesire V T i 式中 为个体间期望距离。定义目标势场函 数 如式(9)所示: V T i (∥xi − xT∥)= ( ∥xi − xT∥ −R 2 lim )2 2 , ∥xi − xT∥ ⩾ R 2 lim 0, 0 ⩽ ∥xi − xT∥ < R 2 lim (9) xT R 2 式中: 为目标位置向量; lim 为个体抵达目标的 最大容许误差。 2 模型同步性理论分析 G ′ = (V,E ′ ) j ∈ N1 i (j,i) E ′ LN = [ li j] ∈ R N×N 本节旨在从理论分析角度对鸽群交互模式切 换模型同步性展开研究。首先定义鸽群平等交互 模式下的有向图 ,若原鸽个体 , 则有序点对 属于边集 。定义鸽群拉普拉斯 矩阵 如式(10)所示: li j = −1, j ∈ Ni 0, j < Ni , j , i |Ni |, j=i (10) 式中 |A| 为集合 A 中元素数目。 ·336· 智 能 系 统 学 报 第 15 卷
第2期 邱华鑫,等:鸽群交互模式切换模型及其同步性分析 ·337· 定义仅保留高层级个体间连接以及高层级个 体与低层级个体间连接的鸽群伪拉普拉斯矩阵 =xzeo,0+,. Lw=eRw如式(I1)所示: -1 if je N,ie Upper K∑.-x+∑) or jENnUpper,iUpper 0 if j N.iE Upper or jNnUpper,i Upper 22,0叶 NnUpper. j=i (11) K".W-s+卫 定义鸽群Lyapunov函数H如式(12)所示: (15) H=H+H2 (12) 将式(1)和式(6)代入式(15)有: 其中势能函数H如式(13)所示: ax.0叶 EN (13) K∑(qx-x .9ax-+2} 动能函数H2如式(14)所示: 叶 - (14) K∑(Tx-xDH 假设1鸽群初始拓扑g(to)为连通图。 假设2Vax Rm-R-R,其中R∈O, .vallz,) 2t. Rm一R)为添加个体联结时原鸽个体间的最小 -..-xD-K (16 距离。 假设3鸽群初始能量H(o)为有限值,g() -g. 在时刻g发生切换,其中q=1,2,…,鸽群拓扑相 -KV 邻两次切换的驻留时间tg-g-1≥1,>0。 假设4鸽群高层级个体集合Upper≠O且高 层级原鸽个体数目Upper<N。 引理1对于一个动态系统=fx),其中 1∑∑ f(x)为连续函数,若存在一个具有一阶连续偏导 ieUpper jeN, +(w-1) 数的连续函数V(x),且满足如下条件。 +∑∑ 1)存在正常数C,使得集合2={x∈RDIV(x)≤C} -KYyT((Lw+(w-1)Lv)8Ip)v 有界; 由式(7)可知w≥1,且由Lw、Lw均为对称半 2)对于任意的x∈2,有(x)≤0: 正定矩阵,故有: 则对于x∈2,当t→o时,x()趋向于S= H≤0,te[tg-1,tg) (17) x∈RP|(x)=0}中的最大不变集。 由式(③)可知,若jeN6-i,则有lxe0,Rmm 定理1考虑由N个原鸽个体组成的鸽群系 并由式(8)可知,当xl→Rm,有写(x0→o。 统,每个原鸽个体动力学模型满足式(1),若系统 而由式(17)可知: 满足假设1~4,则在如式(6)所示的分布式控制律 H)≤H(tg-i),t∈[tg-1,tg) (18) 作用下,所有原鸽个体间可避免碰撞,实现速度 即若H(t,-)<o,H(①<o。则由H在时域上 渐近同步,相对位置趋于期望,整个鸽群可实现 的连续性,可知:jeN(t,-i),均有cl<Rm,并 稳定的编队并抵近目标。 由式(3)可知,jeN,)。故鸽群系统g内已存 证明当te[tg-,,对式(12)关于时间t求 在的原鸽个体间拓扑连接在下一切换时刻t,时仍 导,有: 然保持,即若假设1成立,鸽群系统内部始终保持
L ′ N = [ l ′ i j] ∈ R N×N 定义仅保留高层级个体间连接以及高层级个 体与低层级个体间连接的鸽群伪拉普拉斯矩阵 如式 (11) 所示: l ′ i j = −1, if j ∈ Ni ,i ∈ Upper or j ∈ Ni ∩Upper,i 0 假设 3 鸽群初始能量 为有限值, 在时刻 发生切换,其中 ,鸽群拓扑相 邻两次切换的驻留时间 。 Upper , Ø Upper < N 假设 4 鸽群高层级个体集合 且高 层级原鸽个体数目 。 x˙ = f (x) f (x) V (x) 引理 1 [21] 对于一个动态系统 ,其中 为连续函数,若存在一个具有一阶连续偏导 数的连续函数 ,且满足如下条件。 C Ω = { x ∈ R D |V(x) ⩽ C } 1) 存在正常数 ,使得集合 有界; x ∈ Ω V˙ 2) 对于任意的 ,有 (x) ⩽ 0 ; ∀x0 ∈ Ω t → ∞ x(t) S= { x ∈ R D V˙ (x) = 0 } 则对于 ,当 时 , 趋向于 中的最大不变集。 定理 1 考虑由 N 个原鸽个体组成的鸽群系 统,每个原鸽个体动力学模型满足式 (1),若系统 满足假设 1~4,则在如式 (6) 所示的分布式控制律 作用下,所有原鸽个体间可避免碰撞,实现速度 渐近同步,相对位置趋于期望,整个鸽群可实现 稳定的编队并抵近目标。 证明 当 t ∈ [tq−1,tq) ,对式 (12) 关于时间 t 求 导,有: H˙=K f∑N i=1 1 2 ∑ j∈N1 i ( v T i ∇xiV f i j( xi j ) +v T j∇xjV f i j( xi j )) + K T ∑ i∈Upper ( v T i ∇xiV T i (∥xi − xT ∥) ) + ∑N i=1 ( v T i v˙i ) = K f∑N i=1 v T i ∑ j∈N1 i ∇xiV f i j( xi j ) + K T ∑ i∈Upper ( v T i ∇xiV T i (∥xi − xT ∥) ) + ∑N i=1 ( v T i v˙i ) (15) 将式 (1) 和式 (6) 代入式 (15),有: H˙=K f∑N i=1 v T i ∑ j∈N1 i ∇xiV f i j( xi j ) + K T ∑ i∈Upper ( v T i ∇xiV T i (∥xi − xT ∥) ) + ∑N i=1 ( v T i ui mi ) = K f∑N i=1 v T i ∑ j∈N1 i ∇xiV f i j( xi j ) + K T ∑ i∈Upper ( v T i ∇xiV T i (∥xi − xT ∥) ) + ∑ i∈Upper v T i −K f∑ j∈N1 i ∇xiV f i j( xi j ) −K T∇xiV T i (∥xi − xT∥)−K Vw ∑ j∈Ni vi j + ∑ i<Upper v T i −K f∑ j∈N1 i ∇xiV f i j( xi j ) −K V ∑ j∈Ni\Upper vi j+w ∑ j∈Ni∩Upper vi j = −K V ∑N i=1 v T i ∑ j∈Ni vi j +(w−1) l ∑ i∈Upper v T i ∑ j∈Ni vi j + ∑ i<Upper v T i ∑ j∈Ni∩Upperi vi j = −K V v T ((LN +(w−1) L ′ N ) ⊗ ID ) v (16) w ⩾ 1 LN L ′ 由式 N (7) 可知 ,且由 、 均为对称半 正定矩阵,故有: H˙ ⩽ 0,∀t ∈ [tq−1,tq) (17) j ∈ N1 i ( tq−1 ) xi j ∈ [ 0,R 1 comm. ] xi j → R 1 comm. V f i j( xi j ) → ∞ 由式(3)可知,若 ,则有 , 并由式 (8) 可知,当 ,有 。 而由式 (17) 可知: H (t) ⩽ H ( tq−1 ) ,∀t ∈ [tq−1,tq) (18) H ( tq−1 ) < ∞ H (t) < ∞ H j ∈ N1 i ( tq−1 ) xi j < R 1 comm. j ∈ N1 i ( tq ) G ′ tq 即若 , 。则由 在时域上 的连续性,可知: ,均有 ,并 由式 (3) 可知, 。故鸽群系统 内已存 在的原鸽个体间拓扑连接在下一切换时刻 时仍 然保持,即若假设 1 成立,鸽群系统内部始终保持 第 2 期 邱华鑫,等:鸽群交互模式切换模型及其同步性分析 ·337·
·338· 智能系统学报 第15卷 连通。由式(I3)可知,鸽群Lyapunov函数H在 由假设4可知,存在i使Upper.。由式(6)可知,当 切换时刻1,只可能由于g内添加的原鸽个体间 ig Upper时,4:=0。由式(25)可知1=2=…=w=0, 拓扑连接而产生能量变化。 故有 由式(3)和假设2可知,在切换时刻tg,j∈ -K∑(D N(g)/N(g-i),有Rn≤≤Rmm-Rm,并由式 jEN好 (8)可知: -infor KTVs,VI (1-xTll) (x)≤V (19) -K∑V.(x0 jeM; 式中Vix=maxV(Rm),(Ram-Rm)}0 (21) Vx)对鸽群系统同步性的影响。设定N个原鸽 式中=[xi,x2,…,x,…,xW,xW2…,xWw。 个体的初始位置向量随机分布在满足0≤x≤20m 由于g()对于t≥0为连通图,故鸽群中任意 且-10m≤x≤10m的方形区域内,初始位置向量 两个原鸽个体i和j可通过至少一条路径彼此连 =[10m/s,0],目标位置向量xr=[50m,-50m,随 通,且路径长度≤(W-1)R。此外,由于H<Ha 机指定Upper个原鸽个体作为高层级个体。设 则有l,l<V2H,故2为有界闭集。由于控制 定采样时间t,=0.05s,最大仿真时间Tx=50s,当 输入如式(6)所示的鸽群系统(1)在t∈[t,∞)为 鸽群抵达目标点时,即当原鸽个体与目标点平均 一个自治系统,故可由引理1证明鸽群的稳定性, 距离之k-小于或等于群体辑达目标的银 即对于任意起始于2的状态轨迹最终将收敛至 大容许误差R时,仿真停止,停止时间为T,可 如式(22)定义的集合的最大不变子集: 将T,认定为鸽群抵达目标点所用时间。 S={EE RDN,v∈RON H=O (22) 依照所建模型进行仿真,设定层级交互模式 此时有 下最大通信距离R?mm=Rmm,平等交互模式下最 H=-KVyT((Lw+(w-1)Lv)8ID)v=- 大通信距离Rm=rRm,其中。为平等交互距 K∑∑- 离占比,余下仿真参数设置如表1所示。图1给 (23) i=1 jEN 出了鸽群抵近目标点的仿真运动轨迹,图中五角 K(w-1)∑∑w-P=0 星表示目标,圆形表示鸽群初始位置,三角形表 ieUpper jeN 示鸽群终了位置,实线表示高层级原鸽个体的运 则式(23)成立当且仅当1=2=…=yw=v,其中 动轨迹,虚线表示非高层级原鸽个体的运动轨 ”为鸽群同步速度,即鸽群内所有原鸽个体实现 迹,由图可见,鸽群可在高层级原鸽个体引领下 速度同步。进而可得x=C,且有 抵达目标点。图2给出了鸽群内原鸽个体与目标 1=l2=…=UN (24) 点的平均距离随时间t的变化曲线,由图可见鸽 由式(8)可知,(r=C,故70=0。 群在高层级原鸽个体引领下逐渐趋近目标点,并
H tq G ′ 连通。由式 (13) 可知,鸽群 Lyapunov 函数 在 切换时刻 只可能由于 内添加的原鸽个体间 拓扑连接而产生能量变化。 tq ∀ j ∈ N1 i ( tq ) /N1 i ( tq−1 ) R 3 lim ⩽ xi j ⩽ R 1 comm. −R 1 lim 由式 (3) 和假设 2 可知,在切换时刻 , ,有 ,并由式 (8) 可知: V f i j( xi j ) ⩽ V f max (19) V f max = max{ V f i j ( R 3 lim ) ,V f i j ( R 1 comm. −R 1 lim ) } 式中 0 } (21) x¯ = [x T 11, x T 12,··· , x T 1N ,··· , x T N1 , x T N2 ,··· , x T NN] 式中 T。 G ′ (t) t ⩾ 0 i j xi j ⩽ (N −1)R H < Hmax ∥vi∥ < √ 2Hmax Ω t ∈ [ tqmax ,∞ ) Ω 由于 对于 为连通图,故鸽群中任意 两个原鸽个体 和 可通过至少一条路径彼此连 通,且路径长度 。此外,由于 , 则有 ,故 为有界闭集。由于控制 输入如式 (6) 所示的鸽群系统 (1) 在 为 一个自治系统,故可由引理 1 证明鸽群的稳定性, 即对于任意起始于 的状态轨迹最终将收敛至 如式 (22) 定义的集合的最大不变子集: S= { x¯ ∈ R DN2 , v ∈ R DN H˙=0 } (22) 此时有 H˙=−K V v T ((LN +(w−1) L ′ N ) ⊗ ID ) v=− K V∑N i=1 ∑ j∈Ni (vi −vj) 2− K V (w−1) ∑ i∈Upper ∑ j∈Ni (vi −vj) 2 = 0 (23) v1=v2=···=vN=v ′ v ′ xi j =C 则式 (23) 成立当且仅当 ,其中 为鸽群同步速度,即鸽群内所有原鸽个体实现 速度同步。进而可得 ,且有 u1=u2=···=uN (24) V f i j( xi j ) =C ∇xiV f i j( xi j ) 由式 (8) 可知, ,故 =0。 i < Upper i < Upper ui=0 u1=u2=···=uN=0 由假设 4 可知,存在 。由式 (6) 可知,当 时, 。由式 (25) 可知 , 故有 u= −K f∑ j∈N1 1 ∇x1V f 1 j ( x1 j ) −infor1K T∇x1V T 1 (∥x1 − xT∥) −K f∑ j∈N1 2 ∇x2V f 2 j ( x2 j ) −infor2K T∇x2V T 2 (∥x2 − xT∥) . . . −K f ∑ j∈N1 N ∇xN V f N j( xN j ) −inforN K T∇xN V T N (∥xN − xT∥) =0 (25) xT R 2 lim 即鸽群内所有原鸽个体将会收敛至固定的几 何构型。且由假设 4 可知,鸽群中的高层领导者 可抵达至距目标点 距离为 的区域内。表 明所有原鸽个体间相对位置趋于期望,整个鸽群 可实现稳定的编队并抵近目标。 3 模型同步性仿真分析 N Upper Vmax N 0 ⩽ x 1 i ⩽ 20 m −10 m ⩽ x 2 i ⩽ 10 m vi=[10 m/s,0] xT=[50 m,−50 m] Upper ts=0.05 s Tmax=50 s 1 N ∑N i=1 ∥xi − xT∥ R 5 lim Ta Ta 本节通过仿真实验进一步研究鸽群交互模式 切换模型中不同参数 (包括原鸽个体数目 、高 层级原鸽个体数目 以及个体最大速率 ) 对鸽群系统同步性的影响。设定 个原鸽 个体的初始位置向量随机分布在满足 且 的方形区域内,初始位置向量 ,目标位置向量 ,随 机指定 个原鸽个体作为高层级个体。设 定采样时间 ,最大仿真时间 ,当 鸽群抵达目标点时,即当原鸽个体与目标点平均 距离 小于或等于群体抵达目标的最 大容许误差 时,仿真停止,停止时间为 ,可 将 认定为鸽群抵达目标点所用时间。 R 2 comm.=Rcomm. R 1 comm.=rcR 2 comm. rc t 依照所建模型进行仿真,设定层级交互模式 下最大通信距离 ,平等交互模式下最 大通信距离 ,其中 为平等交互距 离占比,余下仿真参数设置如表 1 所示。图 1 给 出了鸽群抵近目标点的仿真运动轨迹,图中五角 星表示目标,圆形表示鸽群初始位置,三角形表 示鸽群终了位置,实线表示高层级原鸽个体的运 动轨迹,虚线表示非高层级原鸽个体的运动轨 迹,由图可见,鸽群可在高层级原鸽个体引领下 抵达目标点。图 2 给出了鸽群内原鸽个体与目标 点的平均距离随时间 的变化曲线,由图可见鸽 群在高层级原鸽个体引领下逐渐趋近目标点,并 ·338· 智 能 系 统 学 报 第 15 卷
第2期 邱华鑫,等:鸽群交互模式切换模型及其同步性分析 ·339· 在时间t=2.6s时抵达目标点,图中虚线在横轴上 的对应点即为鸽群抵达目标点所用时间T。 (26) 表1鸽群交互模式切换模型参数设置 当鸽群内部原鸽个体归一化速度:近乎随机 Table 1 Parameters of the pigeon flock interaction pat- 分布时,序参量V接近为0,此时鸽群处于混乱 tern switching model 的无序状态;当鸽群内部原鸽个体归一化速度 名称 数值 完全相同,序参量V为1,此时鸽群处于完全同 个体数目N 10 步状态。由此可见,序参量V作为衡量鸽群系统 个体最大速率Vmax/(m-s) 20 群集运动同步程度的指标,其值越大,鸽群同步 高层级个体数目Upper 1 程度越高。图3给出了鸽群序参量V随时间t的 轨迹曲率模式切换阈值Kswitch/m 0.002 变化曲线,图中实线为鸽群序参量V。的变化曲 最大通信距离Rcomm./m 30 线,由图可见,由于仿真初始参数设定,序参量V 编队控制增益K 0.5 初值为1,仿真开始后鸽群同步程度首先陡然下 目标控制增益K☒ 10 降至最低值V(如图3中点划线所示),约为0.9325 对齐控制增益K心 0.5 处,而后逐步回升趋近于1,变化过程中序参量平 个体间期望距离Resire/m 10 均值Vmm(如图3中虚线所示)保持在0.9578,鸽 添加个体连接延迟距离Rmm 群同步程度较高。 0.1 1.00 个体抵达目标的最大容许误差Rm 10 0.99 个体抵达目标的最大容许误差Rm 20 0.98 层级交互模式下对齐权重w 5 0.97 平等交互距离占比: 0.7 0.96 10 0.95 0 0.94 -10 0.9 20 0 0.5 1.0 1.5 2.0 2.5 -30 图3鸽群序参量 -40 Fig.3 Order parameter of pigeon flocks -50 ☆ 10 2030 4050 60 3.1原鸽个体数目 X/m 首先,研究原鸽个体数目N对鸽群归巢群集 图1鸽群抵近目标点的仿真运动轨迹 运动同步性参数的影响。原鸽个体数目N取值 Fig.1 Motion trajectory of the pigeon flock approaching 集合为(4,7,10,13,16,19,22,25,28,31,除原鸽个体 the target 数目N外,其余仿真参数设置如表1所示。为消 70r 除随机因素可能引起的仿真实验偏差,每组仿真 实验共独立重复进行100次。图4给出了100次 .50 独立重复仿真实验后,鸽群归巢群集运动同步性 0 参数随原鸽个体数目N变化的平均统计结果。 0 图4(a)中横轴为仿真时间t,纵轴为原鸽个体与目 20 o T 标点平均距离∑k-x,不同个体数目N对 0 0.5 1.0 1.5 2.0 25 3.0 t/s 应的原鸽个体与目标点平均距离 之4防 图2鸽群与目标点距离 时间t变化曲线在图中以不同线型进行刻画。 Fig.2 Distance between the pigeon flocks and the target 图4(b)中横轴为原鸽个体数目N,纵轴为鸽群抵 为衡量鸽群系统群集运动的同步程度,采用 达目标点所用时间T.。由图4(a)和(b)可见,当 平均归一化速度的绝对值作为序参量(order para- 原鸽个体数目N小于某一阈值()时,原鸽个体 meter)),具体如下22.2刈, 数目N对鸽群抵达目标点所用时间T。几乎无影
t=2.6 s Ta 在时间 时抵达目标点,图中虚线在横轴上 的对应点即为鸽群抵达目标点所用时间 。 表 1 鸽群交互模式切换模型参数设置 Table 1 Parameters of the pigeon flock interaction pattern switching model 名称 数值 个体数目 N 10 个体最大速率 Vmax /(m·s)−1 20 Upper 高层级个体数目 1 轨迹曲率模式切换阈值 Kswitch /m 0.002 最大通信距离 Rcomm. /m 30 K 编队控制增益 f 0.5 K 目标控制增益 T 10 K 对齐控制增益 V 0.5 个体间期望距离 Rdesire /m 10 R 1 添加个体连接延迟距离 lim /m 0.1 R 2 个体抵达目标的最大容许误差 lim /m 10 R 5 个体抵达目标的最大容许误差 lim /m 20 w 层级交互模式下对齐权重 ′ 5 平等交互距离占比 rc 0.7 0 10 20 30 40 50 60 −50 −40 −30 −20 −10 0 10 X/m Y/m 图 1 鸽群抵近目标点的仿真运动轨迹 Fig. 1 Motion trajectory of the pigeon flock approaching the target 0 0.5 1.0 1.5 2.0 2.5 3.0 10 20 30 40 50 60 70 t/s Ta ||x −i xT|| 1 N N Σ τ=1 图 2 鸽群与目标点距离 Fig. 2 Distance between the pigeon flocks and the target 为衡量鸽群系统群集运动的同步程度,采用 平均归一化速度的绝对值作为序参量 (order parameter),具体如下[22-24] : Va= 1 N ∑N i=1 v ∗ i (26) v ∗ i Va v ∗ i Va Va Va t Va Va V min a V mean a 当鸽群内部原鸽个体归一化速度 近乎随机 分布时,序参量 接近为 0,此时鸽群处于混乱 的无序状态;当鸽群内部原鸽个体归一化速度 完全相同,序参量 为 1,此时鸽群处于完全同 步状态。由此可见,序参量 作为衡量鸽群系统 群集运动同步程度的指标,其值越大,鸽群同步 程度越高。图 3 给出了鸽群序参量 随时间 的 变化曲线,图中实线为鸽群序参量 的变化曲 线,由图可见,由于仿真初始参数设定,序参量 初值为 1,仿真开始后鸽群同步程度首先陡然下 降至最低值 (如图 3 中点划线所示),约为 0.932 5 处,而后逐步回升趋近于 1,变化过程中序参量平 均值 (如图 3 中虚线所示) 保持在 0.957 8,鸽 群同步程度较高。 0 0.5 1.0 1.5 2.0 2.5 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 t/s Va Va mean Va min Va 图 3 鸽群序参量 Fig. 3 Order parameter of pigeon flocks 3.1 原鸽个体数目 N N {4,7,10,13,16,19,22,25,28,31} N t 1 N ∑N i=1 ∥xi − xT∥ N 1 N ∑N i=1 ∥xi − xT∥ t N Ta N N Ta 首先,研究原鸽个体数目 对鸽群归巢群集 运动同步性参数的影响。原鸽个体数目 取值 集合为 ,除原鸽个体 数目 外,其余仿真参数设置如表 1 所示。为消 除随机因素可能引起的仿真实验偏差,每组仿真 实验共独立重复进行 100 次。图 4 给出了 100 次 独立重复仿真实验后,鸽群归巢群集运动同步性 参数随原鸽个体数目 N 变化的平均统计结果。 图 4(a) 中横轴为仿真时间 ,纵轴为原鸽个体与目 标点平均距离 ,不同个体数目 对 应的原鸽个体与目标点平均距离 随 时间 变化曲线在图中以不同线型进行刻画。 图 4(b) 中横轴为原鸽个体数目 ,纵轴为鸽群抵 达目标点所用时间 。由图 4(a) 和 (b) 可见,当 原鸽个体数目 小于某一阈值 (..) 时,原鸽个体 数目 对鸽群抵达目标点所用时间 几乎无影 第 2 期 邱华鑫,等:鸽群交互模式切换模型及其同步性分析 ·339·
·340· 智能系统学报 第15卷 响,而当大于该阈值后,鸽群抵达目标点所用时 小于某一阈值(N=10)时,鸽群序参量平均值Vmcm 间T.随原鸽个体数目N增加而增大。图4(c)中 和序参量最小值V均随原鸽个体数目N增大 横轴为仿真时间t,纵轴为鸽群序参量V,不同个 而升高,而当大于该阈值后,鸽群序参量平均值 体数目N对应的鸽群序参量V,随时间t变化曲 V先保持平稳后出现些许下降,而鸽群序参量 线在图中以不同线型进行刻画。图4(中横轴为 最小值随原鸽个体数目N增加而减小。综 原鸽个体数目N,纵轴为鸽群序参量V,圆形标 上所述,当鸽群群体规模较大时,群体虽可趋近 记线和方形标记线分别代表序参量平均值Vmem 目标并实现速度同步,但趋近速度以及同步效果 和序参量最小值Vm随原鸽个体数目N的变化 均会出现不同程度的折损。 曲线。由图4(c)和(d)可见,当原鸽个体数目N 70 60 F最 50 40 9 30 N=28 20 =31 09o00g00eg0008 12 7 10 13161922252831 1/s (a)原鸽个体与目标平均距离 (b)鸽群抵达目标时间 1.00 1.09度889晚01 0.95 0.8 0.909 692- a-9 0.85 4 0.2 0.80 12 0.7547101$161922252831 tis (c)序参量 (d)序参量平均值与最小值 图4鸽群同步性参数随原鸽个体数目的变化曲线 Fig.4 Curves of synchronization parameters of pigeon flocks with the number of individuals 32高层级原鸽个体数目 标点所用时间T.随高层级原鸽个体数目Upper 其次,研究高层级原鸽个体数目Upper对鸽 增加而下降。图5(c)中横轴、纵轴设定与图 群归巢群集运动同步性参数的影响。高层级原 4c)相同,不同高层级原鸽个体数目Upper对应 鸽个体数日Upper取值集合为{1,2,3,4,5,6,7, 的鸽群序参量V随时间1变化曲线在图中以不 8,9},除高层级原鸽个体数目Upper外,其余仿 同线型进行刻画。图5()中纵轴以及标记线设 真参数设置如表1所示,每组仿真实验共独立重 定与图4(d)相同,横轴为高层级原鸽个体数目 复进行100次。图5给出了100次独立重复仿真 Upper。由图5(c)和(d)可见,鸽群序参量平均值 实验后,鸽群归巢群集运动同步性参数随高层级 Vn和序参量最小值mn均随高层级原鸽个体 原鸽个体数目Upper变化的平均统计结果。图 数目Upper增大而下降。综上所述,当鸽群中引 5(a)中横轴、纵轴设定与图4(a)相同,不同高层 入较多的高层级个体时,虽会加速鸽群向目标 级原鸽个体数目Upper对应的原鸽个体与目标 点的趋近,但鸽群同步效果会出现一定程度的 点平均距离京立,-5H随时间!变化面线在图 下降。 1 3.3个体最大速率 中以不同线型进行刻画。图5(b)中横轴为高层 最后,研究个体最大速率Vx对鸽群归巢群 级原鸽个体数目Upper,纵轴为鸽群抵达目标点 集运动同步性参数的影响。除原鸽个体最大速率 所用时间Ta。由图5(a)和(b)可见,鸽群抵达目 Vx外,其余仿真参数设置如表1所示,原鸽个体最
Ta N t Va N Va t N Va V mean a V min a N N 响,而当大于该阈值后,鸽群抵达目标点所用时 间 随原鸽个体数目 增加而增大。图 4(c) 中 横轴为仿真时间 ,纵轴为鸽群序参量 ,不同个 体数目 对应的鸽群序参量 随时间 变化曲 线在图中以不同线型进行刻画。图 4(d) 中横轴为 原鸽个体数目 ,纵轴为鸽群序参量 ,圆形标 记线和方形标记线分别代表序参量平均值 和序参量最小值 随原鸽个体数目 的变化 曲线。由图 4(c) 和 (d) 可见,当原鸽个体数目 N=10 V mean a V min a N V mean a V min a N 小于某一阈值 ( ) 时,鸽群序参量平均值 和序参量最小值 均随原鸽个体数目 增大 而升高,而当大于该阈值后,鸽群序参量平均值 先保持平稳后出现些许下降,而鸽群序参量 最小值 随原鸽个体数目 增加而减小。综 上所述,当鸽群群体规模较大时,群体虽可趋近 目标并实现速度同步,但趋近速度以及同步效果 均会出现不同程度的折损。 4 7 10 13 16 19 22 25 28 31 2 3 4 5 6 7 N Ta/s (b) 鸽群抵达目标时间 0 2 4 6 8 10 12 0.2 0.4 0.6 0.8 1.0 t/s Va N=4 N=7 N=10 N=13 N=16 N=19 N=22 N=25 N=28 N=31 (c) 序参量 0 2 4 6 8 10 12 0 10 20 30 40 50 60 70 t/s N=4 N=7 N=10 N=13 N=16 N=19 N=22 N=25 N=28 N=31 (a) 原鸽个体与目标平均距离 4 7 10 13 16 19 22 25 28 31 0.75 0.80 0.85 0.90 0.95 1.00 N (d) 序参量平均值与最小值 mean Va min Va Va ||x −i xT||/m 1 N N Σ τ=1 图 4 鸽群同步性参数随原鸽个体数目的变化曲线 Fig. 4 Curves of synchronization parameters of pigeon flocks with the number of individuals 3.2 高层级原鸽个体数目 Upper Upper Upper Upper Upper 1 N ∑N i=1 ∥xi − xT∥ t Upper Ta 其次,研究高层级原鸽个体数目 对鸽 群归巢群集运动同步性参数的影响。高层级原 鸽个体数目 取值集合为 { 1, 2, 3, 4, 5, 6, 7, 8, 9 },除高层级原鸽个体数目 外,其余仿 真参数设置如表 1 所示,每组仿真实验共独立重 复进行 100 次。图 5 给出了 100 次独立重复仿真 实验后,鸽群归巢群集运动同步性参数随高层级 原鸽个体数目 变化的平均统计结果。图 5(a) 中横轴、纵轴设定与图 4(a) 相同,不同高层 级原鸽个体数目 对应的原鸽个体与目标 点平均距离 随时间 变化曲线在图 中以不同线型进行刻画。图 5(b) 中横轴为高层 级原鸽个体数目 ,纵轴为鸽群抵达目标点 所用时间 。由图 5(a) 和 (b) 可见,鸽群抵达目 Ta Upper Upper Va t Upper V mean a V min a Upper 标点所用时间 随高层级原鸽个体数目 增加而下降。 图 5(c) 中横轴、纵轴设定与 图 4(c) 相同,不同高层级原鸽个体数目 对应 的鸽群序参量 随时间 变化曲线在图中以不 同线型进行刻画。图 5(d) 中纵轴以及标记线设 定与图 4(d) 相同,横轴为高层级原鸽个体数目 。由图 5(c)和 (d) 可见,鸽群序参量平均值 和序参量最小值 均随高层级原鸽个体 数目 增大而下降。综上所述,当鸽群中引 入较多的高层级个体时,虽会加速鸽群向目标 点的趋近,但鸽群同步效果会出现一定程度的 下降。 3.3 个体最大速率 Vmax Vmax 最后,研究个体最大速率 对鸽群归巢群 集运动同步性参数的影响。除原鸽个体最大速率 外,其余仿真参数设置如表 1 所示,原鸽个体最 ·340· 智 能 系 统 学 报 第 15 卷
第2期 邱华鑫,等:鸽群交互模式切换模型及其同步性分析 ·341· 大速率V取值集合为{5m/s,10m/s,15m/s,20m/s, 图6给出了100次独立重复仿真实验后,鸽 25m/s,30m/s,35m/s,40m/s,45m/s,每组仿真实 群归巢群集运动同步性参数随原鸽个体最大速率 验共独立重复进行100次。 Vmax变化的平均统计结果。 2.76 Upper=1 70 Pper pper 2.6 60 Upper 50 pperl 2.5 3 Upper=9 2.4 2.3 0 0.5 1.0 1.5 2.0 30 5 789 [Upperl (a)原鸽个体与目标平均距离 (b)鸽群抵达目标时间 10 -V mear 1.0 Upper=1 0Vm 0.8 0.8 ppe jUpper-3 0.6 Jpper pper 04 ppe 0.6 0.2 Upper Upper 0.4 0 0.51.01.52.02.53.0 23456 789 IUpperl (c)序参量 (d)序参量平均值与最小值 图5鸽群同步性参数随高层级原鸽个体数目的变化曲线 Fig.5 Curves of synchronization parameters of pigeon flocks with the number of higher-rank individuals 10 =5 =10 70 60 =25 50 =30 6 40 4 =3 0 30 2 10 0 0 6 12 5 10 15202530354045 (a)原鸽个体与目标平均距离 (b)鸽群抵达目标时间 1.0 ● =5 0 =10 9 =15 =20 0.8 0.7 0.6 °0.5 =40 0. =45 0.6 8腔 0 0 02 10152025 30354045 g (c)序参量 (d序参量平均值与最小值 图6鸽群同步性参数随原鸽个体最大速率的变化曲线 Fig.6 Curves of synchronization parameters of pigeon flocks with the maximum rate of individuals
Vmax 5 m/s 10 m/s 15 m/s 20 m/s 25 m/s 30 m/s 35 m/s 40 m/s 45 m/s 大速率 取值集合为{ , , , , , , , , },每组仿真实 验共独立重复进行 100 次。 Vmax 图 6 给出了 100 次独立重复仿真实验后,鸽 群归巢群集运动同步性参数随原鸽个体最大速率 变化的平均统计结果。 t/s (a) 原鸽个体与目标平均距离 0 0.5 1.0 1.5 2.0 2.5 3.0 10 20 30 40 50 60 70 |Upper|=1 |Upper|=2 |Upper|=3 |Upper|=4 |Upper|=5 |Upper|=6 |Upper|=7 |Upper|=8 |Upper|=9 Ta/s (b) 鸽群抵达目标时间 1 2 3 4 5 6 7 8 9 2.3 2.4 2.5 2.6 2.7 |Upper| t/s (c) 序参量 Va |Upper|=1 |Upper|=2 |Upper|=3 |Upper|=4 |Upper|=5 |Upper|=6 |Upper|=7 |Upper|=8 |Upper|=9 0 0.5 1.0 1.5 2.0 2.5 3.0 0.2 0.4 0.6 0.8 1.0 (d) 序参量平均值与最小值 Va mean Va min Va 1 2 3 4 5 6 7 8 9 0.4 0.6 0.8 1.0 |Upper| ||x −i xT||/m 1 N N Σ τ=1 图 5 鸽群同步性参数随高层级原鸽个体数目的变化曲线 Fig. 5 Curves of synchronization parameters of pigeon flocks with the number of higher-rank individuals t/s (a) 原鸽个体与目标平均距离 0 2 4 6 8 10 12 10 20 30 40 50 60 70 Vmax=5 Vmax=10 Vmax=15 Vmax=20 Vmax=25 Vmax=30 Vmax=35 Vmax=40 Vmax=45 t/s (c) 序参量 Va Vmax=5 Vmax=10 Vmax=15 Vmax=20 Vmax=25 Vmax=30 Vmax=35 Vmax=40 Vmax=45 0 2 4 6 8 10 12 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Ta/s (b) 鸽群抵达目标时间 5 10 15 20 25 30 35 40 45 0 2 4 6 8 10 Vmax (d) 序参量平均值与最小值 Va 5 10 15 20 25 30 35 40 45 0.4 0.6 0.8 1.0 Vmax mean Va min Va ||x −i xT||/m 1 N N Σ τ=1 图 6 鸽群同步性参数随原鸽个体最大速率的变化曲线 Fig. 6 Curves of synchronization parameters of pigeon flocks with the maximum rate of individuals 第 2 期 邱华鑫,等:鸽群交互模式切换模型及其同步性分析 ·341·
·342· 智能系统学报 第15卷 图6(a)中横轴、纵轴设定与图4(a)及图5(a) 鸽个体数目、高层级原鸽个体数目以及个体最大 相同,不同个体最大速率V对应的原鸽个体与 速率下,鸽群系统同步性均可得到保障,且可抵 目标点平均距高只立k一H随时间!变化曲线 达目标。 在图中以不同线型进行刻画。图6(b)中横轴为原 参考文献: 鸽个体最大速率Vx,纵轴为鸽群抵达目标点所 [1]BAJEC I L,HEPPNER F H.Organized flight in birds[J]. 用时间T.。由图6(a)和(b)可见,当原鸽个体最 Animal behaviour,2009,78(4):777-789. 大速率Vx小于某一阈值(Vmax<35m/s)时,鸽群 [2]REN Jiaping,SUN Wanxuan,MANOCHA D,et al.Stable 抵达目标点所用时间T随原鸽个体最大速率 information transfer network facilitates the emergence of Vx增加而下降,而当大于该阈值后,原鸽个体最 collective behavior of bird flocks[J].Physical review E, 大速率Vmx对鸽群抵达目标点所用时间T,几乎 2018,98(5):052309 无影响。图6(c)中横轴、纵轴设定与图4(c) [3]SAINZ-BORGO C.KOFLER S,JAFFE K.On the adapt- 及图5(c)相同,不同个体最大速率V对应的鸽 ive characteristics of bird flocks:small birds form mixed 群序参量V随时间t变化曲线在图中以不同线 flocks[J].Ornitologia neotropical,2018,29:289-296. 型进行刻画。图6(d)中纵轴以及标记线设定与 [4]CHEN Duxin,LIU Xiaolu,XU Bowen,et al.Intermit- 图4(d)及图5(d)相同,横轴为原鸽个体最大速率 tence and connectivity of interactions in pigeon flock flights[J].Scientific reports,2017,7(1):10452. Vm。由图6(c)和(d)可见,鸽群序参量平均值 [5]CHEN Duxin,XU Bowen,ZHU Tao,et al.Anisotropic in- Vm和序参量最小值Vmm均随原鸽个体最大速 teraction rules in circular motions of pigeon flocks:an em- 率Vx增大而上升,但当原鸽个体最大速率V pirical study based on sparse Bayesian learning[J].Physic- 大于某一阈值Vx≥20m/s时,上升趋势不再显 al review E,2017,96(2:022411. 著。综上所述,提升原鸽个体机动能力,有助于 [6]BALLERINI M,CABIBBO N.CANDELIER R,et al.In- 改善鸽群同步效果,但当原鸽个体机动能力达到 teraction ruling animal collective behavior depends on to- 一定程度时,改善效果不再显著。 pological rather than metric distance:Evidence from a field study[J].Proceedings of the national academy of sciences 4结论 of the United States of America.2008.105(4):1232-1237. 具备群居性的鸟类,历经长期演化,在防御、 [7]NAGY M,AKOS Z,BIRO D,et al.Hierarchical group dy- namics in pigeon flocks[J].Nature,2010,464(7290): 繁殖、觅食、社群、节律、攻击等行为中均体现出 890-893. 共识自主性,涌现出具备无中心、简单和自组织 特点的群体智能。本文以原鸽为研究对象,归 [8]ZAFEIRIS A,VICSEK T.Advantages of hierarchical or- ganization:from pigeon flocks to optimal network struc- 纳出原鸽归巢机制中的双模式决策原则、模式切 tures[C]//Proceedings of Research in the Decision Sci- 换原则与优势个体原则,并基于上述原则建立鸽 ences for Global Business:Best Papers from the 2013 An- 群交互模式切换模型。 nual Conference.New Jersey,United States,2015: 基于LaSalle不变集理论,给出鸽群系统实 281-282. 现同步的条件,具体如下:首先亦定义包括势能 [9]FLACK A,BIRO D,GUILFORD T,et al.Modelling 函数和动能函数在内的鸽群Lyapunov函数,基 group navigation:transitive social structures improve nav- 于Lyapunov稳定性理论证明鸽群Lyapunov函数 igational performance[J].Journal of the royal society inter- 值在平等交互模式有向图相邻切换区间内递减: face,2015,12(108):20150213 由鸽群编队势场函数以及原鸽个体平等交互模 [10]CHEN Zhiyong,ZHANG Haitao,CHEN Xi,et al.Two- 式下邻居集合的特殊设定,可得鸽群Lyapunov level leader-follower organization in pigeon flocks[J]. EPL (Europhysics letters),2015,112(2):20008 函数值在平等交互模式有向图切换时刻增加有 [11]NAGY M,VASARHELYI G,PETTIT B,et al.Context- 限;继而可知鸽群Lyapunov函数存在上界,同时 dependent hierarchies in pigeons[J].Proceedings of the 由鸽群编队势场函数特殊设定可知原鸽个体间 national academy of sciences of the United States of 不会发生碰撞;进而基于LaSalle不变集理论,可 America.2013,110(32):13049-13054. 证鸽群内所有个体可实现速度同步,并可收敛至 [12]BIRO D,SASAKI T,PORTUGAL S J.Bringing a time- 固定的几何构型,同时抵达目标。由蒙特卡罗仿 depth perspective to collective Animal Behaviour[J] 真结果可见,若鸽群系统满足假设条件,不同原 Trends in ecology evolution,2016,31(7):550-562
Vmax 1 N ∑N i=1 ∥xi − xT∥ t Vmax Ta Vmax Vmax < 35 m/s Ta Vmax Vmax Ta Vmax Va t Vmax V mean a V min a Vmax Vmax Vmax ⩾ 20 m/s 图 6(a) 中横轴、纵轴设定与图 4(a) 及图 5(a) 相同,不同个体最大速率 对应的原鸽个体与 目标点平均距离 随时间 变化曲线 在图中以不同线型进行刻画。图 6(b) 中横轴为原 鸽个体最大速率 ,纵轴为鸽群抵达目标点所 用时间 。由图 6(a) 和 (b) 可见,当原鸽个体最 大速率 小于某一阈值 ( ) 时,鸽群 抵达目标点所用时间 随原鸽个体最大速率 增加而下降,而当大于该阈值后,原鸽个体最 大速率 对鸽群抵达目标点所用时间 几乎 无影响。 图 6(c ) 中横轴、纵轴设定与 图 4(c) 及图 5(c) 相同,不同个体最大速率 对应的鸽 群序参量 随时间 变化曲线在图中以不同线 型进行刻画。图 6(d) 中纵轴以及标记线设定与 图 4(d) 及图 5(d) 相同,横轴为原鸽个体最大速率 。由图 6(c) 和 (d) 可见,鸽群序参量平均值 和序参量最小值 均随原鸽个体最大速 率 增大而上升,但当原鸽个体最大速率 大于某一阈值 时,上升趋势不再显 著。综上所述,提升原鸽个体机动能力,有助于 改善鸽群同步效果,但当原鸽个体机动能力达到 一定程度时,改善效果不再显著。 4 结论 具备群居性的鸟类,历经长期演化,在防御、 繁殖、觅食、社群、节律、攻击等行为中均体现出 共识自主性,涌现出具备无中心、简单和自组织 特点的群体智能[25]。本文以原鸽为研究对象,归 纳出原鸽归巢机制中的双模式决策原则、模式切 换原则与优势个体原则,并基于上述原则建立鸽 群交互模式切换模型。 基于 LaSalle 不变集理论,给出鸽群系统实 现同步的条件,具体如下:首先亦定义包括势能 函数和动能函数在内的鸽群 Lyapunov 函数,基 于 Lyapunov 稳定性理论证明鸽群 Lyapunov 函数 值在平等交互模式有向图相邻切换区间内递减; 由鸽群编队势场函数以及原鸽个体平等交互模 式下邻居集合的特殊设定,可得鸽群 Lyapunov 函数值在平等交互模式有向图切换时刻增加有 限;继而可知鸽群 Lyapunov 函数存在上界,同时 由鸽群编队势场函数特殊设定可知原鸽个体间 不会发生碰撞;进而基于 LaSalle 不变集理论,可 证鸽群内所有个体可实现速度同步,并可收敛至 固定的几何构型,同时抵达目标。由蒙特卡罗仿 真结果可见,若鸽群系统满足假设条件,不同原 鸽个体数目、高层级原鸽个体数目以及个体最大 速率下,鸽群系统同步性均可得到保障,且可抵 达目标。 参考文献: BAJEC I L, HEPPNER F H. Organized flight in birds[J]. Animal behaviour, 2009, 78(4): 777–789. [1] REN Jiaping, SUN Wanxuan, MANOCHA D, et al. Stable information transfer network facilitates the emergence of collective behavior of bird flocks[J]. Physical review E, 2018, 98(5): 052309. [2] SAINZ-BORGO C, KOFLER S, JAFFE K. On the adaptive characteristics of bird flocks: small birds form mixed flocks[J]. Ornitología neotropical, 2018, 29: 289–296. [3] CHEN Duxin, LIU Xiaolu, XU Bowen, et al. Intermittence and connectivity of interactions in pigeon flock flights[J]. Scientific reports, 2017, 7(1): 10452. [4] CHEN Duxin, XU Bowen, ZHU Tao, et al. Anisotropic interaction rules in circular motions of pigeon flocks: an empirical study based on sparse Bayesian learning[J]. Physical review E, 2017, 96(2): 022411. [5] BALLERINI M, CABIBBO N, CANDELIER R, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study[J]. Proceedings of the national academy of sciences of the United States of America, 2008, 105(4): 1232–1237. [6] NAGY M, ÁKOS Z, BIRO D, et al. Hierarchical group dynamics in pigeon flocks[J]. Nature, 2010, 464(7290): 890–893. [7] ZAFEIRIS A, VICSEK T. Advantages of hierarchical organization: from pigeon flocks to optimal network structures[C]//Proceedings of Research in the Decision Sciences for Global Business: Best Papers from the 2013 Annual Conference. New Jersey, United States, 2015: 281−282. [8] FLACK A, BIRO D, GUILFORD T, et al. Modelling group navigation: transitive social structures improve navigational performance[J]. Journal of the royal society interface, 2015, 12(108): 20150213. [9] CHEN Zhiyong, ZHANG Haitao, CHEN Xi, et al. Twolevel leader-follower organization in pigeon flocks[J]. EPL (Europhysics letters), 2015, 112(2): 20008. [10] NAGY M, VÁSÁRHELYI G, PETTIT B, et al. Contextdependent hierarchies in pigeons[J]. Proceedings of the national academy of sciences of the United States of America, 2013, 110(32): 13049–13054. [11] BIRO D, SASAKI T, PORTUGAL S J. Bringing a timedepth perspective to collective Animal Behaviour[J]. Trends in ecology & evolution, 2016, 31(7): 550–562. [12] ·342· 智 能 系 统 学 报 第 15 卷
第2期 邱华鑫,等:鸽群交互模式切换模型及其同步性分析 ·343· [13]PETTIT B,PERNA A,BIRO D,et al.Interaction rules type of phase transition in a system of self-driven underlying group decisions in homing pigeons[J].Journal particles[J].Physical review letters,1995,75(6): of the royal society interface,2013,10(89):20130529. 1226-1229 [14]PETTIT B,AKOS Z,VICSEK T,et al.Speed determines [23]罗琪楠基于鸽群行为机制的多无人机协调围捕及验 leadership and leadership determines learning during pi- 证D].北京:北京航空航天大学,2017 geon flocking[J].Current biology,2015,25(23): [24]LUO Qi'nan.Research on cooperative control and pur- 3132-3137. suit-evasion strategy of multi-UAV based on pigeon beha- [15]FREEMAN R,MANN R,GUILFORD T,et al.Group de- vioral mechanisms[D].Beijing:Beihang University, cisions and individual differences:route fidelity predicts 2017. flight leadership in homing pigeons(Columba livia)[J]. [25]段海滨,邱华鑫.基于群体智能的无人机集群自主控 Biology letters,2010,7(1):63-66. 制M北京:科学出版社,2018. [16]FLACK A,PETTIT B,FREEMAN R,et al.What are 作者简介: leaders made of?The role of individual experience in de- 邱华鑫,博士后,主要研究方向为 termining leader-follower relations in homing pigeons[J]. 群体智能、无人机自主控制。 Animal behaviour,2012,83(3):703-709. [17]WATTS I,PETTIT B,NAGY M,et al.Lack of experi- ence-based stratification in homing pigeon leadership hierarchies[J].Royal Society open science,2016,3(1): 150518. [18]ZHANG Haitao,CHEN Zhiyong,VICSEK T,et al. 段海滨,教授,博士生导师,主要 Route-dependent switch between hierarchical and egalit- 研究方向为无人机集群自主控制、计 arian strategies in pigeon flocks[J].Scientific reports, 算机仿生视觉与智能感知、仿生智能 计算理论及应用。主持国家自然科学 2014,4(1)5805. 基金重点项目等课题,出版专著3部 [19]CHEN Duxin,VICSEK T,LIU Xiaolu,et al.Switching 发表学术论文200余篇。 hierarchical leadership mechanism in homing flight of pi- geon flocks[J].EPL (Europhysics letters),2016,114(6): 60008. 范彦铭,研究员,博士生导师,航 空工业首批首席专家,主要研究方向 [20]陈杰,方浩,辛斌.多智能体系统的协同群集运动控 为先进飞行器控制律设计与实现、无 制M.北京:科学出版社,2017. 人机自主飞行控制。主持国家级研究 [21]KHALIL H K.Noninear systems[M].New Jersey:Pren- 项目10余项,获国家科技进步二等 tice-Hall,1996. 奖、国防科技进步特等奖,发表学术论 [22]VICSEK T,CZIROK A,BEN-JACOB E,et al.Novel 文30余篇
PETTIT B, PERNA A, BIRO D, et al. Interaction rules underlying group decisions in homing pigeons[J]. Journal of the royal society interface, 2013, 10(89): 20130529. [13] PETTIT B, ÁKOS Z, VICSEK T, et al. Speed determines leadership and leadership determines learning during pigeon flocking[J]. Current biology, 2015, 25(23): 3132–3137. [14] FREEMAN R, MANN R, GUILFORD T, et al. Group decisions and individual differences: route fidelity predicts flight leadership in homing pigeons (Columba livia)[J]. Biology letters, 2010, 7(1): 63–66. [15] FLACK A, PETTIT B, FREEMAN R, et al. What are leaders made of? The role of individual experience in determining leader-follower relations in homing pigeons[J]. Animal behaviour, 2012, 83(3): 703–709. [16] WATTS I, PETTIT B, NAGY M, et al. Lack of experience-based stratification in homing pigeon leadership hierarchies[J]. Royal Society open science, 2016, 3(1): 150518. [17] ZHANG Haitao, CHEN Zhiyong, VICSEK T, et al. Route-dependent switch between hierarchical and egalitarian strategies in pigeon flocks[J]. Scientific reports, 2014, 4(1): 5805. [18] CHEN Duxin, VICSEK T, LIU Xiaolu, et al. Switching hierarchical leadership mechanism in homing flight of pigeon flocks[J]. EPL (Europhysics letters), 2016, 114(6): 60008. [19] 陈杰, 方浩, 辛斌. 多智能体系统的协同群集运动控 制 [M]. 北京: 科学出版社, 2017. [20] KHALIL H K. Noninear systems[M]. New Jersey: Prentice-Hall, 1996. [21] [22] VICSEK T, CZIRÓK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical review letters, 1995, 75(6): 1226–1229. 罗琪楠. 基于鸽群行为机制的多无人机协调围捕及验 证 [D]. 北京: 北京航空航天大学, 2017. [23] LUO Qi’nan. Research on cooperative control and pursuit-evasion strategy of multi-UAV based on pigeon behavioral mechanisms[D]. Beijing: Beihang University, 2017. [24] 段海滨, 邱华鑫. 基于群体智能的无人机集群自主控 制 [M]. 北京: 科学出版社, 2018. [25] 作者简介: 邱华鑫,博士后,主要研究方向为 群体智能、无人机自主控制。 段海滨,教授,博士生导师,主要 研究方向为无人机集群自主控制、计 算机仿生视觉与智能感知、仿生智能 计算理论及应用。主持国家自然科学 基金重点项目等课题,出版专著 3 部, 发表学术论 文 200 余篇。 范彦铭,研究员,博士生导师,航 空工业首批首席专家,主要研究方向 为先进飞行器控制律设计与实现、无 人机自主飞行控制。主持国家级研究 项目 10 余项,获国家科技进步二等 奖、国防科技进步特等奖,发表学术论 文 30 余篇。 第 2 期 邱华鑫,等:鸽群交互模式切换模型及其同步性分析 ·343·