《二程材料蜀热加工基础》 第十章瓜监产 机械工程系 金工教研室 工程材料与热加工基础—一程晓宇
工程材料与热加工基础——程晓宇 《工程材料与热加工基础》 第十章 锻压生产 ⚫ 机械工程系 ⚫ 金工教研室
第二章锻压 1、何为锻压? 锻压是对坯料施加外力,使其产生塑性变形、改变尺寸、形状 及改善性能,用以制造机械零件、工件或毛坯的成形加工方法。 它是锻造与冲压的总称,属于压力加工的范畴。 锻压设备 工程材料与热加工基础—一程晓宇
工程材料与热加工基础——程晓宇 1、何为锻压? 锻压是对坯料施加外力,使其产生塑性变形、改变尺寸、形状 及改善性能,用以制造机械零件、工件或毛坯的成形加工方法。 它是锻造与冲压的总称,属于压力加工的范畴。 锻压设备 第二章 锻 压
2、锻压特点 塑性变形是压力加工的基础,凡具有一定塑性的金属如钢及大多数有色金 属,均可进行压力加工 与铸造相比,压力加工的优点是:金属铸锭经塑性变形后,铸造组织的内 部缺陷如气孔、缩孔、微裂纹等得到焊合,再结晶后可细化晶粒,金属的 各种力学性能得到提高。冲压件又具有重量轻、精度高、刚性好等优点。 但由于锻压件是在固态成形,金属的流动受到限制。因此,对于形状复杂、 尤其是内腔形状复杂的零件,从制造工艺上锻件远不及铸件容易实现。另 外,锻件的成本比铸件高,材料利用率等方面也不如铸件。然而,从锻件 力学性能的提髙,锻造流线更加与受力条件相适应,在同样受力条件下 零件的几何尺寸可以缩小的角度看,又可以大大降低原材料的使用量,延 长零件的使用寿命,节约金属。 工程材料与热加工基础—一程晓宇
工程材料与热加工基础——程晓宇 2、锻压特点: 塑性变形是压力加工的基础,凡具有一定塑性的金属如钢及大多数有色金 属,均可进行压力加工。 与铸造相比,压力加工的优点是:金属铸锭经塑性变形后,铸造组织的内 部缺陷如气孔、缩孔、微裂纹等得到焊合,再结晶后可细化晶粒,金属的 各种力学性能得到提高。冲压件又具有重量轻、精度高、刚性好等优点。 但由于锻压件是在固态成形,金属的流动受到限制。因此,对于形状复杂、 尤其是内腔形状复杂的零件,从制造工艺上锻件远不及铸件容易实现。另 外,锻件的成本比铸件高,材料利用率等方面也不如铸件。然而,从锻件 力学性能的提高,锻造流线更加与受力条件相适应,在同样受力条件下, 零件的几何尺寸可以缩小的角度看,又可以大大降低原材料的使用量,延 长零件的使用寿命,节约金属
第一节金属的锻造性能 金属的塑性变形概述 金属塑性变形的实质,对于单晶体是由于金属原子某晶面两侧受切应力 作用产生相对滑移,或晶体的部分晶格相对于某晶面沿一定方向发生切变, 即滑移理论和孪生理论。 工程材料与热加工基础—一程晓宇
工程材料与热加工基础——程晓宇 一、金属的塑性变形概述 金属塑性变形的实质,对于单晶体是由于金属原子某晶面两侧受切应力 作用产生相对滑移,或晶体的部分晶格相对于某晶面沿一定方向发生切变, 即滑移理论和孪生理论。 第一节 金属的锻造性能
二、热锻、冷锻、温锻、等温锻 从金属学的观点划分锻压加工的界限为再结晶温度 1.热锻在金属再结晶温度以上进行的锻造工艺称为热锻。在变形过程中 冷变形强化和再结晶同时存在,属于动态再结晶。 2.冷锻在室温下进行的锻造工艺称为冷锻。冷锻可以避兔金属加热出现 的缺陷,获得较高的精度和表面质量,并能提高工件的强度和硬度。但冷 锻变形抗力大,需用较大吨位的设备,多次变形时需增加再结晶退火和其 它辅助工序。目前冷锻主要局限于低碳钢、有色金属及其合金的薄件及小 件加工。 3.温锻在高于室温和低于再结晶温度范围内进行的锻造工艺称为温锻。 与热锻相比,坯料氧化脱碳少,有利于提髙工件的精度和表面质量;与冷 锻相比,变形抗力减小、塑性增加,一般不需要预先退火、表面处理和工 序间退火。温锻适用于变形抗力大、冷变形强化敏感的高碳钢、中高合金 钢、轴承钢、不锈钢等 4.等温锻在锻造全过程中,温度保持恒定不变的锻造方法称为等温锻。 工程材料与热加工基础—一程晓宇
工程材料与热加工基础——程晓宇 二、热锻、冷锻、温锻、等温锻 从金属学的观点划分锻压加工的界限为再结晶温度。 1.热锻 在金属再结晶温度以上进行的锻造工艺称为热锻。在变形过程中 冷变形强化和再结晶同时存在,属于动态再结晶。 2.冷锻 在室温下进行的锻造工艺称为冷锻。冷锻可以避免金属加热出现 的缺陷,获得较高的精度和表面质量,并能提高工件的强度和硬度。但冷 锻变形抗力大,需用较大吨位的设备,多次变形时需增加再结晶退火和其 它辅助工序。目前冷锻主要局限于低碳钢、有色金属及其合金的薄件及小 件加工。 3.温锻 在高于室温和低于再结晶温度范围内进行的锻造工艺称为温锻。 与热锻相比,坯料氧化脱碳少,有利于提高工件的精度和表面质量;与冷 锻相比,变形抗力减小、塑性增加,一般不需要预先退火、表面处理和工 序间退火。温锻适用于变形抗力大、冷变形强化敏感的高碳钢、中高合金 钢、轴承钢、不锈钢等。 4.等温锻 在锻造全过程中,温度保持恒定不变的锻造方法称为等温锻
三、锻造流线和锻造比 锻造时,金属的脆性杂质被打碎,顺着金属主要伸长方向呈碎粒状或 链状分布;塑性杂质随着金属变形沿主要伸长方向呈带状分布,这样热锻 后的金属组织就具有一定的方向性,通常称为锻造流线,又叫纤维组织。 锻造比是锻造时变形程度的一种表示方法。通常用变形前后的截面比、 长度比或高度比来表示。 锻造比对锻件的锻透程度和力学性能有很大影响。当锻造比达到2时, 随着金属内部组织的致密化,锻件纵向和横向的力学性能均有显著提髙: 当锻造比为2-5时,由于流线化的加强,力学性能出现各向异性,纵向性 能虽仍略提高,但横向性能开始下降,锻造比超过5后,因金属组织的致 密度和晶粒细化度均已达到最大值,纵向性能不再提高,横向性能却急剧 下降。因此,选择适当的锻造比相当重要。一般,碳素结构钢取2-3, 金结构钢取3-4。对于某些高合金工具钢和特殊性能的合金钢,为促进合 金碳化物分布的均匀化,击碎钢中的碳化物,常采用较大的锻造比,如高 速钢取5-12,不绣钢取4-6。 锻造比越大,锻造流线越明显;锻造流线的稳定性很髙,不能用热处 理方法消除,只有经过锻压使金属变形,才能改变其方向和形状。 工程材料与热加工基础—一程晓宇
工程材料与热加工基础——程晓宇 三、锻造流线和锻造比 锻造时,金属的脆性杂质被打碎,顺着金属主要伸长方向呈碎粒状或 链状分布;塑性杂质随着金属变形沿主要伸长方向呈带状分布,这样热锻 后的金属组织就具有一定的方向性,通常称为锻造流线,又叫纤维组织。 锻造比是锻造时变形程度的一种表示方法。通常用变形前后的截面比、 长度比或高度比来表示。 锻造比对锻件的锻透程度和力学性能有很大影响。当锻造比达到2时, 随着金属内部组织的致密化,锻件纵向和横向的力学性能均有显著提高; 当锻造比为2-5时,由于流线化的加强,力学性能出现各向异性,纵向性 能虽仍略提高,但横向性能开始下降,锻造比超过5后,因金属组织的致 密度和晶粒细化度均已达到最大值,纵向性能不再提高,横向性能却急剧 下降。因此,选择适当的锻造比相当重要。一般,碳素结构钢取2-3,合 金结构钢取3-4。对于某些高合金工具钢和特殊性能的合金钢,为促进合 金碳化物分布的均匀化,击碎钢中的碳化物,常采用较大的锻造比,如高 速钢取5-12,不绣钢取4-6。 锻造比越大,锻造流线越明显;锻造流线的稳定性很高,不能用热处 理方法消除,只有经过锻压使金属变形,才能改变其方向和形状
四、金属的锻造性能 是指金属经受锻压加工时成形的难易程度的工艺性能。其优劣常用 塑性和变形抗力综合衡量。塑性髙、变形抗力小则锻造性能好。它决定 于金属的本质和变形条件 (一)金属的本质 1.化学成分纯金属—般具有良好的锻造性能。碳钢随碳的质量分数的 增加,锻造性能逐渐变差。合金元素的加入会劣化锻造性能 2.金属组织纯金属及固溶体锻造性能好,而碳化物的锻造性能差。铸 态柱状晶组织和粗晶结构不如细小而又均勺晶粒结构的金属锻造性能好。 工程材料与热加工基础—一程晓宇
工程材料与热加工基础——程晓宇 四、金属的锻造性能 是指金属经受锻压加工时成形的难易程度的工艺性能。其优劣常用 塑性和变形抗力综合衡量。塑性高、变形抗力小则锻造性能好。它决定 于金属的本质和变形条件。 (一)金属的本质 1.化学成分 纯金属一般具有良好的锻造性能。碳钢随碳的质量分数的 增加,锻造性能逐渐变差。合金元素的加入会劣化锻造性能 2.金属组织 纯金属及固溶体锻造性能好,而碳化物的锻造性能差。铸 态柱状晶组织和粗晶结构不如细小而又均匀晶粒结构的金属锻造性能好
二)变形条件 1.变形温度变形温度低,金属的塑性差、变形抗力大,不但锻压困难, 而且容易开裂。提高金属变形时的温度,可使原子动能增加,原子间的 结合力消弱,使塑性提高,变形抗力减小。 锻造温度范围是指锻件由始锻温度到终锻温度的间隔。锻造温度范围的 确定以合金状态图为依据。 2.变形速度变形速度指单位时间内的变形程度,变形速度低时,金属 的回复和再结晶能够充分进行,塑性高、变形抗力小;随变形速度的增 大,回复和再结晶不能及时消除冷变形强化,使金属塑性下降,变形抗 力增加,锻造性能变差。常用的锻压设备不可能超过临界变形速度。 工程材料与热加工基础—一程晓宇
工程材料与热加工基础——程晓宇 (二)变形条件 1.变形温度 变形温度低,金属的塑性差、变形抗力大,不但锻压困难, 而且容易开裂。提高金属变形时的温度,可使原子动能增加,原子间的 结合力消弱,使塑性提高,变形抗力减小。 锻造温度范围是指锻件由始锻温度到终锻温度的间隔。锻造温度范围的 确定以合金状态图为依据。 2.变形速度 变形速度指单位时间内的变形程度,变形速度低时,金属 的回复和再结晶能够充分进行,塑性高、变形抗力小;随变形速度的增 大,回复和再结晶不能及时消除冷变形强化,使金属塑性下降,变形抗 力增加,锻造性能变差。常用的锻压设备不可能超过临界变形速度
(二)变形条件 3.应力状态采用不同的变形方法,在金属中产生的应力状态是不同 的。应力状态对于塑性的影响为:压应力数目越多,塑性越好;拉应 力数目越多,塑性越差;应力状态对于变形抗力的影响为:同号应力 状态下的变形抗力大于异号状态下的变形抗力。所以,在选择变形方 法时,对于塑性高的金属,变形时出现拉应力有利于减少能量消耗; 对于塑性低的金属应尽量采用三向压应力以增加塑性,防止裂纹。 4.坯料表面质量表面粗糙或有划痕、微裂纹、粗大夹杂都会在变形 过程中产生应力集中,使缺陷扩展甚至开裂。故塑性加工前应对坯料 表面进行清理消除缺陷,有时甚至需要进行表面预切削去掉坯料的表 层金属。 工程材料与热加工基础—一程晓宇
工程材料与热加工基础——程晓宇 (二)变形条件 3.应力状态 采用不同的变形方法,在金属中产生的应力状态是不同 的。应力状态对于塑性的影响为:压应力数目越多,塑性越好;拉应 力数目越多,塑性越差;应力状态对于变形抗力的影响为:同号应力 状态下的变形抗力大于异号状态下的变形抗力。所以,在选择变形方 法时,对于塑性高的金属,变形时出现拉应力有利于减少能量消耗; 对于塑性低的金属应尽量采用三向压应力以增加塑性,防止裂纹。 4.坯料表面质量 表面粗糙或有划痕、微裂纹、粗大夹杂都会在变形 过程中产生应力集中,使缺陷扩展甚至开裂。故塑性加工前应对坯料 表面进行清理消除缺陷,有时甚至需要进行表面预切削去掉坯料的表 层金属
五、金属的塑性变形规律 1.体积不变条件 由于塑性变形时金属密度的变化很小,所以可认为变形前后的体积相等 此假设称为体积不变条件。 2.最小阻力定律 最小阻力定律是描述塑性变形流动规律的一种理论,如果物体在变形过 程中其质点有向各种方向移动的可能性时,则物体各质点将向着阻力最 的方向移动。一般,金属内某一质点流动阻力最小的方向是通过该质 点向金属变形部分的周边所作的法线方向 工程材料与热加工基础—一程晓宇
工程材料与热加工基础——程晓宇 五、金属的塑性变形规律 1.体积不变条件 由于塑性变形时金属密度的变化很小,所以可认为变形前后的体积相等。 此假设称为体积不变条件。 2.最小阻力定律 最小阻力定律是描述塑性变形流动规律的一种理论,如果物体在变形过 程中其质点有向各种方向移动的可能性时,则物体各质点将向着阻力最 小的方向移动。一般,金属内某一质点流动阻力最小的方向是通过该质 点向金属变形部分的周边所作的法线方向