环境物理化学电子 (供环境科学专业使用 第3幸 热力学第三定 十兴南制作 复旦大学环境科学导程系 O 2008 Fudan University. All rights reserved
叶兴南 制作 复旦大学环境科学与工程系 © 2008 Fudan University. All rights reserved. 环境物理化学电子课件 (供环境科学专业使用) 第3章 热力学第二定律
■是不是遵守能量守恒定律的事情就都可能 发生呢? 01
2019年3月10日1时36分 是不是遵守能量守恒定律的事情就都可能 发生呢?
热力学第一定律的缺陷 ■又要马儿跑,又要马儿不吃草(第一定 律) ■吃一斤长一斤(第二定律) ■石墨变金刚石的故事,只能在高压下发生 钢铁自动生锈,锈铁不会自动还原 ■问题:自然界的自发过程是有方向的,过 程进行是有限度的 01
2019年3月10日1时36分 热力学第一定律的缺陷 又要马儿跑,又要马儿不吃草(第一定 律)。 吃一斤长一斤(第二定律)。 石墨变金刚石的故事,只能在高压下发生 钢铁自动生锈,锈铁不会自动还原。 问题:自然界的自发过程是有方向的,过 程进行是有限度的
自发过程特点 水往低处流, 2.溶质扩散 气体混合 4.热从高温物体传到低温物体 结论1:自发过程都是不可逆的 结论2:自发过程的方向总是单向地朝着平衡状态 水流可以发电; 2.化学反应可以设计成电池 结论3:一切自发过程都具有做功本领。 01
2019年3月10日1时36分 自发过程特点 1. 水往低处流, 2. 溶质扩散 3. 气体混合 4. 热从高温物体传到低温物体 结论1:自发过程都是不可逆的 结论2:自发过程的方向总是单向地朝着平衡状态 1. 水流可以发电; 2. 化学反应可以设计成电池 结论3:一切自发过程都具有做功本领
自发过程特点 Q=Q+W Q 热机 01
2019年3月10日1时36分 E Q 热机 Q’ W W’ Q 自发过程特点 Q=Q’+W
发过程特点 势能做功特点: 1.势能能够全部转化为热 2热机吸收热只能部分部分转变为功 结论3:功能全部转化为热 热能做功,但热功不能完全等价交换。 体系或环境破坏 100%W W作》100%Q Q <100%W 01
2019年3月10日1时36分 势能做功特点: 1. 势能能够全部转化为热 2.热机吸收热只能部分部分转变为功 结论3:功能全部转化为热 热能做功,但热功不能完全等价交换。 自发过程特点 100%Q 无条件 W Q 100%W 体系或环境破坏 <100%W
热力学第二定律的文字表述 1.克劳休斯( Clausius)表述: “热不会自动地从低温物体传向高温物体” 2.开尔文( Kelvin)表述: “不可能从单一热源取出热并使之完全转变为功而不引起 其它变化。 “第二类永动机是不可能制成的” 3.隔离体系中自发过程总是朝混乱度增大的方向进行 4.自发过程是向着体系作功能力趋于减少的方向进行的 01
2019年3月10日1时36分 热力学第二定律的文字表述 1.克劳休斯(Clausius)表述: “ 热不会自动地从低温物体传向高温物体” 2.开尔文(Kelvin)表述: “ 不可能从单一热源取出热并使之完全转变为功而不引起 其它变化。” “ 第二类永动机是不可能制成的” 3.隔离体系中自发过程总是朝混乱度增大的方向进行 4.自发过程是向着体系作功能力趋于减少的方向进行的
功可以完全转变为热 ■热能否完全转变为功? ■热不可能完全转变为功而不引起环境变化 01
2019年3月10日1时36分 功可以完全转变为热 热能否完全转变为功? 热不可能完全转变为功而不引起环境变化
2-3 Carnot循环 绝热线 匚高温热源T, p pa 卡诺机 \pz 净功W Q 等温线T2 低温热源T 等温线T 3 V 01
2019年3月10日1时36分 2-3 Carnot循环 低温热源 T1 高温热源 T2 卡诺机 Q2 Q1 W 等温线T2 p1V1 p2V2 -∫pdV=Q2 Q1 p V 净功W 等温线T1 绝热线 p3V3 p4V4
Carnot循环 过程 △U 过程方程 (1)等温可逆膨胀0Q2=W2=nRT2n(VV1)pV=p2V2 (2)绝热可逆膨胀△U=W=nCva(T1-T2)0 TV.Y-I=T, V, Y-1 (3)等温可逆压缩0Q=W1=nRTn(v4/v)p3V3=pv4 (4)绝热可逆压缩△U=W=nCya(T2-T)0 T2V11=T1V41 Wa=nRT,In-2+nRT,In 少=-=nR(72-T)n2/W1_T2-7 nRt Inv/ 1n3=1n2? 01
2019年3月10日1时36分 过程 U Q 过程方程 (1)等温可逆膨胀 0 Q2 =-W2=nRT2 ln(V2 /V1 ) p1V1=p2V2 (2)绝热可逆膨胀 U=W=nCV,m(T1 -T2 ) 0 T2V2 -1=T1V3 -1 (3)等温可逆压缩 0 Q1 =-W1=nRT1 ln(V4 /V3 ) p3V3=p4V4 (4)绝热可逆压缩 U=W=nCV,m(T2 -T1 ) 0 T2V1 -1=T1V4 -1 3-2 Carnot循环 3 4 1 1 2 2 V V nRT ln V V -W总 nRT ln 1 2 2 1 V V nR(T - T )ln 2 2 1 2 2 1 2 1 2 1 2 ln / - ( )ln / T T T nRT V V nR T T V V Q W 总 ? V V ln V V ln 1 2 4 3