复旦大学新视野系列研究生课程:科研论文的构思、撰写和发表 科研论文撰写和送审过程中 孚师和学生的互动 杨雄里院士 下 今晚6时:蒲慕明教授“怎样学习做一个好的科学家
复旦大学新视野系列研究生课程:科研论文的构思、撰写和发表 科研论文撰写和送审过程中 导师和学生的互动 杨雄里院士 下一次 今晚6时:蒲慕明教授 “怎样学习做一个好的科学家
杨雄里院士 神经生物学家,1963年上海科技大学生物系毕业,1963 1999年在中国科学院上海生理研究所工作,历任研究实习员、 助理研究员、副研究员、研究员、所长。1980-1982年在日本 进修并获学术博士学位。1985-1987年先后在美国哈佛大学、 贝勒医学院从事合作研究。2000年创建复旦大学神经生物学研 究所并任所长。 曾任中国生理学会理事长,亚太地区生理学联合会第一副 主席。长期从事视觉神经机制的研究,在几个层次上对视网膜 中的信息传递的调控进行系统研究并有数项新发现。1989年获 中科院自然科学一等奖,1991年当选为中国科学院院士,2001 年获何梁何利科技进步奖。现为 Progress in Neur ob io logy等 国内外学术刊物编委或主编
杨雄里院士 神经生物学家,1963年上海科技大学生物系毕业,1963- 1999年在中国科学院上海生理研究所工作,历任研究实习员、 助理研究员、副研究员、研究员、所长。1980-1982年在日本 进修并获学术博士学位。1985-1987年先后在美国哈佛大学、 贝勒医学院从事合作研究。2000年创建复旦大学神经生物学研 究所并任所长。 曾任中国生理学会理事长,亚太地区生理学联合会第一副 主席。长期从事视觉神经机制的研究,在几个层次上对视网膜 中的信息传递的调控进行系统研究并有数项新发现。1989年获 中科院自然科学一等奖,1991年当选为中国科学院院士,2001 年获何梁何利科技进步奖。现为Progress in Neurobiology等 国内外学术刊物编委或主编
作业二 根据所给的研究结果(确实有困难的同学可自选一篇论文) 1.为该论文拟一个标题并撰写论文前言、材料和方法、结果、讨 论部分的橱要(i.e. outline:限前言不多于4句、材料和方法不多于5 个标题、结果不多于6句、讨论不多于5句)。 2.为该论文选一个最适合的杂志,按照该杂志的投稿要求,以你 的名义和通讯作者的身份给该杂志写一封全真(除了不用邮寄给该杂志) 的投稿信( cover letter),投稿信写法可参照参考书和鲁白教授的ppt 3.按照所投稿杂志的要求撰写论文摘要(可不做) (自选论文的同学请附所依据的论文全文) 写下你认为最好的一个报告的报告人的名字(本学期最佳被告人) 写好姓名和学号打印,2006年1月4日前交西7号楼160/168陈晓青)。 日后本作业所依据的论文全文和所发表的杂志等信息将上载到课程网页 上供大家参考
根据所给的研究结果(确实有困难的同学可自选一篇论文): 1. 为该论文拟一个标题并撰写论文前言、材料和方法、结果、讨 论部分的概要(i.e. outline: 限前言不多于4句、材料和方法不多于5 个标题、结果不多于6句、讨论不多于5句)。 2. 为该论文选一个最适合的杂志,按照该杂志的投稿要求,以你 的名义和通讯作者的身份给该杂志写一封全真(除了不用邮寄给该杂志) 的投稿信(cover letter),投稿信写法可参照参考书和鲁白教授的ppt. 3.按照所投稿杂志的要求撰写论文摘要(可不做) (自选论文的同学请附所依据的论文全文) 写下你认为最好的一个报告的报告人的名字(本学期最佳被告人). 写好姓名和学号打印,2006年1月4日前交西7号楼160/168陈晓青)。 日后本作业所依据的论文全文和所发表的杂志等信息将上载到课程网页 上供大家参考. 作 业 二
科研论文撰写和送审过程中 导师和学生的互动 杨雄里 复旦大学神经生物学研究所
科研论文撰写和送审过程中 导师和学生的互动 杨 雄 里 复旦大学神经生物学研究所
本研究室科研论文撰写的程序 1.导师和学生讨论论文的基本构思、框架、 插图;学生说明其实验结果的创新点;决 定投寄何种杂志。 2.学生向导师提供与该课题有关的主要综述 和原始论文(20~30篇)。 3.由学生本人撰写论文的初稿,送交导师
本研究室科研论文撰写的程序 1. 导师和学生讨论论文的基本构思、框架、 插图;学生说明其实验结果的创新点;决 定投寄何种杂志。 2. 学生向导师提供与该课题有关的主要综述 和原始论文(20~30篇)。 3. 由学生本人撰写论文的初稿,送交导师
本研究室科研论文撰写的程序 4.导师对初稿作出评论;请学生补充实验数据, 并提出修改意见,但通常并不立即修改。 5.参考导师评论和修改意见,学生撰写第二稿, 送交导师。 6.导师在第二稿基础上进行修改,部分内容完 全重写,交回学生,请学生提出修改意见 (用不同字体标明),形成第三稿
4. 导师对初稿作出评论;请学生补充实验数据, 并提出修改意见,但通常并不立即修改。 5. 参考导师评论和修改意见,学生撰写第二稿, 送交导师。 6. 导师在第二稿基础上进行修改,部分内容完 全重写,交回学生,请学生提出修改意见 (用不同字体标明),形成第三稿。 本研究室科研论文撰写的程序
2. With regarding-to the relatively slow rise times of the IPsCs, we think there are two-possibilities. First, more or less, the IPSCs will be unavoidably filtered by its process structure, specially their fast rise phase( see the reply 1a)using i simulation with typical values of the parameters used above. we found ifthe 10- 90%eme05 ms for IPSCs pro时动一 te /efz xke A w44 A oL-LfesABr-44 4 end of BC axon,枚 ed-down to about o,62ms(24% increase),when recorded from BC soma. However when the 10-90% rise time is about 2.5 ms the increase is less than 10%/Therefore itseems electrical filtering te the et of IPSCs observed in our work ie-7 4e relatvely sma the- mg乙 glycinergic synapses made on bullfrog BCs, just as suggested for glycine receptors in the neuron of the inferior colliculus( Backus, Frech and Karushaar Zoology 2000). This assumptiom is strongly supported by a recent paper/(Frech Perez-Lebn, Wassle and Backus, J Neurophysiol 2001) performing on mouse nacrine cells They-found that,-op compact amacrine cells. the 10-90%6 iset time of glycinergic IPSCs is about 2.4 ms, while that of GABAergic IPSCs is much less(see pages 1632, 1637-1639 of the paper). They thought that the slow rise time is not due to process fitering, but may be due to synaptic properties, such as slow association rate constants of glycine receptors, slower transmitter exchange rate, which could be due to different morphological properties, different glial ensheathment, or different transmitter reuptake rate and sparse clustering of glycine receptors resulting in a more desynchronized activation of the glycine receptors. Additionally, Maple and Wu(J Physiol 1998) C L %amm上(r
320 Yue Yang Road Xiong-Li Yang, Ph.D. Shanghai, China Director, Professor Tel:370080 ∠A :乙多 a、y…44mm+f NAOcc" 7 Moll. etls cesr 7 和y ∠ “5 A、C,< yx…““ 得t 少n乙
relationship Po-Im-p /(IN), where Im-p is the peak amplitude of the mean IPSC.The weighted mean single-channel conductance (g) could be derived from the relationship gs-i/(Erev- Vh), where Erev is the reversal potential of glycine receptor- mediated chloride currents, and Vh the holding potential. In this study, the equilibrium potential of chloride ions was about-35 mV. Statistical analysis was performed using unpaired Students t test and data were represented as mcans+ SD 2(%7x(B…-4 Filtering properties of BCs under voltage-clamp recordings. revaluate the effect of filtering on the kinetics of IPSCs, we digitally- modeled butllfrog-retinal BCs with NEURON- software Hines and Carnevale. 1997) as following. Bullfrog BC has a soma of about 7 um in diameter, an axon of 50 um long and L um in diameter branching into two processes (30 um in length and 1 um in diameter), and a primary dendrite of 10 um long and 2 um in diameter branching into two thinner processes with 20 um long and l um in diameter/ (measured from BC images). Taking a typical input resistance for BCs of 10 G@2 when potassium channels were blocked during our experiments, we-can-calculate a membrane conductance per unit area of 0. 143 Sm 2wo .rind If-weAssumd a cytoplasm resistivity of 200 Qcm and a specific membrane capacitance ofIuFcm2, this would lead to a space constant()of about 935_um for 子 d.c.and about 197 um for 100 Hz a.c. value much longer than the typical length of4 BC dendrites and axon. For typical glycinergic IPSCs studied in present work with a 10-90% rise time t,of 1.5-3.5 ms a decay time constant(tp)of 10-40 ms and a peak amplitude (p)of 5-30 pA, T, and to will be slowed down less than 10% and 5% respectively, and I, will be decreased about 7% even when IPSCs were elicited from the end of BC dendrites or axon
不 4L∠a sLcifretea, ex response was remarkably potentiated in either low Ca or in the presence of IBMX as well. The increased voltage responses of photoreceptors in low Ca wld definitely enhance- Be-velti The above two effects are in opposite signs. Therefore, whether light responses of the second-order neurons are potentiated or suppressed basically depends upon how much the saturation suppression is compensated by the increased voltage responses of photoreceptors 4 Passible explanation for differential modation by low Car可“2x from R- cones and G-cones to BCs reported that low Ca"suppressed the G-cone-driven responses of the cone horizontal cell more substantially than the R-cone-driven ones. This observation was accounted for by that the reduction in the synaptic strength between R-cones and cone honizontal cells due to saturation suppressioncoutdbecompensated to targerextenr by the more potentiate- cone signal in low Ca as compared to the G-cone signal [51]. This difference in compensation extent could时h↓y"drm modulation of R-cone and G-conce-driven BC responses(Fig. I and 2)/This explanation did not exclude other mechanisms that may involved in the above different effects of low Carsuch as R-cone andt econt\ mas operate aldimerent pathway for the signal input to cone eNBCs as it had een reported in Ltype horizontal cells. However, this point remaine te- ∠n-…=“ y而 2y(5.2