设在全混流反应器中进行如下平行反应 A-)P(主反应) rp=kCa A一,S(副反应) ′s=k,C 由全混流反应器的设计基础式r 得 C (k,+k2)Co(1-x)(K,+k2x1-x) Cp-CPo kC10(1-xA)k1(1-x4) 由()7x,=(k+k)1代入(2式: 1+(k1+k2)z yp=k(1-x,)=Mm、(+k2))21+(k1+k厂( k,t d.c[(k1+k2)可 dk, k 对(3)式求导 d1+(k+k2)r]2 z(k1+k2) k,t (1+k -kit dt 0 (4) E k=k RT doko explE RT R k E21E2 E? 将上两式代入(4)式整理得(1+k2)E1-k2E2=0 I+tko? exp[-] E? tko, exp[
设在全混流反应器中进行如下平行反应: A ⎯⎯1→k P (主反应) P CA r k = 1 A ⎯⎯k 2→ S (副反应) S CA r k = 2 A A A P S CA r r r r r (k k ) = ,1 + ,2 = + = 1 + 2 由全混流反应器的设计基础式 A A A r C x0 = 得: ( ) (1 ) ( )(1 ) 1 2 0 1 2 0 0 A A A A A A A A A k k x x k k C x C x r C C + − = + − = − = (1) (1 ) (1 ) 1 0 1 0 A P A A P P P P k x Y k C x C r C C − = − = − = (2) 由(1)得 1 ( ) ( ) 1 2 1 2 k k k k xA + + + = 代入(2)式: 1 ( ) ) 1 ( (1 ) (1 1 2 1 1 2 1 2 1 1 k k k k k k k Y k x k P A + + = + + + = − = − ) ( ) (3) 对(3)式求导: 2 1 2 2 1 2 1 1 1 2 [1 ( ] [( ] [ ] ) ) k k dt dk dt dk k dt dk k k dt dYP + + + − + = 令 = 0 dt dYP [( ] [ ] 0 2 1 2 1 1 1 + 2 − + = dt dk dt dk k dt dk k k ) 即: (1 ) 0 2 1 1 + 2 − = dt dk k dt dk k (4) ∵ exp[ ] 0 RT E k = k − ∴ 2 1 2 1 1 1 01 1 { exp[ ]} RT E k RT E RT E k dt dk = − = 2 2 2 2 2 2 02 2 { exp[ ]} RT E k RT E RT E k dt dk = − = 将上两式代入(4)式整理得 (1+ k2 )E1 − k2 E2 = 0 1 exp[ ] exp[ ] 2 02 1 2 2 02 RT E k E E RT E +k − = −
令么今 l]l=1 将(5)式两边取对数整理得:T= R(Ink kot( E2-1)
exp[ ][ 1] 1 1 2 2 02 − − = E E RT E k (5) 将(5)式两边取对数整理得: {ln[ ( 1)]} 1 2 02 2 − = E E R k E Topt