点击切换搜索课件文库搜索结果(145)
文档格式:DOC 文档大小:98KB 文档页数:3
设f是实线性空间V上的一个正定、对称的双线性函数,则Va,B∈V,(a,): f(a,B)称为向量a与B的内积;具有内积的实线性空间称为欧几里得空间(简称欧氏空 间) 对任意α∈V,定义
文档格式:DOC 文档大小:194.5KB 文档页数:7
第二章2-5n阶方阵 2.5.1n阶方阵,对角矩阵,数量矩阵,单位矩阵,初等矩阵,对称、反对称、上三角、 下三角矩阵 定义(数域K上的n阶方阵)数域K上的nn矩阵成为K上的n阶方阵,K上全 体n阶方阵所成的集合记作Mn(K)。 定义(n阶对角矩阵、数量矩阵、单位矩阵)数域K上形如 ( 0 0 n /nxn 的方阵被称为n阶对角矩阵,与其他矩阵相乘,有 (a1a12and
文档格式:DOC 文档大小:98KB 文档页数:3
6-1欧几里得空间 设f是实线性空间V上的一个正定、对称的双线性函数,则Va,B∈V,(a,): f(a,B)称为向量a与B的内积;具有内积的实线性空间称为欧几里得空间(简称欧氏空 间) 对任意α∈V,定义
文档格式:PPT 文档大小:231KB 文档页数:11
1.n维向量的概念 定义2所谓数域P上一个n维向量就是由 数域P中n个有次序的数a1,a2,…,an所组 成的数组,这n个数称为该向量的n个分量,第 i个数a称为第i个分量 分量全为实数的向量称为实向量, 分量全为复数的向量称为复向量
文档格式:PDF 文档大小:164.44KB 文档页数:5
一.(本题共40分)给定有理数域上的多项式f(x)=x4+3x2+3 1.(本题5分)证明f(x)为中的不可约多项式 2.(本题5分)设a是f(x)在复数域C内的一个根.定义 Qa]= {ao +aa+a2a2}
文档格式:PPT 文档大小:858KB 文档页数:37
一、平面图形的面积 1直角坐标系 作为一般情况讨论,设平面图形由a,b] 上连续的两条曲线y=f(x)与y=g(x) (f(x)≥g(x)及两条直线x=ax=b所围成 在[a,b]上任取典型小区间[x,x+dx 与它相对应的小曲边梯形的面积为局部量dA
文档格式:PDF 文档大小:182.45KB 文档页数:30
一、本单元的内容要点 1函数单调性的判别法 设f∈C[a,b]∩D(a,b),若Vxe(ab),有f(x)>0(<0) 则f(x)在[ab]上是单调增加(减少). 若当x1时,有f(x)≥0(≤0),且使得f(x)=0的 点(驻点)在的任何有界子区间内只有有限多个,则f(x) 在上单调增加(减少)
文档格式:PPT 文档大小:860KB 文档页数:37
定积分的几何应用 一、平面图形的面积 1直角坐标系 作为一般情况讨论,设平面图形由[a,b]上连续的两条曲线y=f(x)与y=g(x)(f(x)≥g(x)及两条直线x=ax=b所围成在[a,b上任取典型小区间[xx+dx与它相对应的小曲边梯形的面积为局部量dA
文档格式:PPT 文档大小:860KB 文档页数:37
定积分的几何应用 一、平面图形的面积 1直角坐标系 作为一般情况讨论,设平面图形由[a,b] 上连续的两条曲线y=f(x)与y=g(x) (f(x)≥g(x)及两条直线x=ax=b所围成 在[a,b上任取典型小区间[xx+dx 与它相对应的小曲边梯形的面积为局部量dA
文档格式:DOC 文档大小:296KB 文档页数:4
12-4外代数 12.4.1域K上的线性空间V的到域K上的线性空间W的r重交错映射的定义 定义12.9设V是数域K上的n维线性空间,又设W也是K上的一个线性空间。 从 x…xV 到W的一个多线性映射f如果满足如下条件 f(aaaa)=0(i=1,2r-1) (即第i,i+1两个变元取V内同一个向量a1),则称f为一个r重交错映射。 12.3.2r重交错映射的三条性质
首页上页7891011121314下页末页
热门关键字
搜索一下,找到相关课件或文库资源 145 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有