点击切换搜索课件文库搜索结果(342)
文档格式:DOC 文档大小:242.5KB 文档页数:5
第六章6-4四维时空空间与辛空间 在狭义相对论中,用三个空间坐标和一个时间坐标来刻画一个物体的运动,称为四维时 空空间 在R上规定一个特殊的度量f(a,B)=x1y1+x2y2+x3y3-x4y4(其中a=( x1,x2,x3,x4),B=(y1,y2,y3,y4),称为四维时空空间的度量 令 1000 0100 I= 0010 L000-1 在R内取定基
文档格式:DOC 文档大小:526.5KB 文档页数:18
第五章二次型 5-1二次型及其矩阵表示 一、二次型及其矩阵表示 设P是一个数域,一个系数在数域P中的x1xn的二次齐次多项式称为数域P上的一个n元二次型,简称二次型
文档格式:PPT 文档大小:239.5KB 文档页数:13
一、n元线性方程组 1设线性方程组nx1+an2x2+…+amxn=b若常数项b2,…,bn不全为零,则称此方程组为非1,02,齐次线性方程组;若常数项b,b2bn全为零
文档格式:DOC 文档大小:73KB 文档页数:1
定义10设v1,V2是欧氏空间V中两个子空间如果对于任意的a∈V1,BEV2 恒有 (a,B)=0 则称V,2为正交的,记为V1⊥V2一个向量,如果对于任意的B∈V,恒有 (a,B)=0
文档格式:DOC 文档大小:232KB 文档页数:3
第二章4矩阵的运算 2.4.1矩阵运算的定义 定义(矩阵的加法和数乘)给定两个mn矩阵 [a1a12an [b1b12…b A= a21 a22 a2n B= b21b22…b2 : : Lamt am22a bmbm2b A和B加法定义为
文档格式:DOC 文档大小:194KB 文档页数:3
设V是复线性空间.V×V上的一个函数,如果满足 (i)(·,·)对第一个变量是线性的 (i)(a,B)=(B (ii1)ya∈V,(a,a)≥0,且(a,a)=0分a=0 则称(a,B)为向量a,B的内积,具有内积的复线性空间称为酉空间(欧氏空间在复线性 空间上的推广)
文档格式:DOC 文档大小:48KB 文档页数:1
4.1.3线性空间的基与维数,向量的坐标 设V是数域K上的线性空间, 定义4.9基和维数 如果在V中存在n个向量a1,a2,…,an,满足 1)、a1,a2,…,an线性无关; 2)、V中任一向量在K上可表成a1,a2,…,an的线性组合
文档格式:DOC 文档大小:854.5KB 文档页数:19
定义1设V是数域P上的一个线性空间,f是V到P的一个映射,如果f 满足 1)f(a+)=f(a)+f() 2) f(ka)=(a), 式中a,B是V中任意元素,k是P中任意数,则称f为V上的一个线性函数 从定义可推出线性函数的以下简单性质:
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用小块矩阵表示如下:
文档格式:DOC 文档大小:175KB 文档页数:2
8-2同余式 8.2.1有理整数环中的同余的定义 定义8.5设m是一个正整数,若a,b∈Z,且ba∈(m),亦即m(b-a),则 称b与a模m同余,记作b=a(modm)。不难得到,b与a模m同余就是它们用m做带 余除法所得的余数相同。整数模m同余为一等价关系,验证如下: 1、反身性:a=a(modm) 2、对称性:若b=a(modm),则a=b(modm) 3、转递性:若a=b(modm),b=c(modm),则
首页上页89101112131415下页末页
热门关键字
搜索一下,找到相关课件或文库资源 342 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有