点击切换搜索课件文库搜索结果(1259)
文档格式:PDF 文档大小:385.18KB 文档页数:5
全尾砂膏体作为一种塑性流体,其内部结构的形貌特征与浆体流动性能紧密相关,研究剪切过程中微观结构的演化特征,对于分析膏体管道输送及制备工艺中的流动行为具有十分重要的意义.本文借助扫描电镜技术,拍摄了不同搅拌时间的膏体微观结构图像.综合应用计算机图像处理技术和分形理论,估算了膏体微结构的分形盒维数,提出以结构系数λ作为微结构形貌特征的表征指标,建立了搅拌过程中微结构时间演化过程的数学模型.某铅锌尾矿膏体相关实验的结果表明:其结构系数λ随搅拌时间急剧减小,并逐渐趋于平缓,最终达到某一平衡状态.通过对实验数据的拟合,得到其演化模型相关的破坏系数及恢复系数,分别为0.171及0.491
文档格式:PDF 文档大小:431.2KB 文档页数:6
分析了解析法与简化方法的缺点,采用有限元法建立轧辊热变形计算模型.针对轧制过程中轧辊热变形计算数据特点,将计算任务分为负责静态数据准备的预计算和负责动态数据准备与热变形求解的更新计算,换辊时进行预计算,计算任意时刻的热变形时只需进行更新计算,计算量远小于标准有限元程序.根据特殊处理的计算流程,编写了基于轴对称有限元法的轧辊热变形程序,其计算结果与ANSYS结果一致,精度均高于简化方法约30%.自编轧辊热膨胀有限元程序计算精度高,耗时少,满足在线热膨胀预报要求
文档格式:PDF 文档大小:701.91KB 文档页数:11
管道滑坡危险性评价是长输油气管道沿线滑坡灾害预防和治理中规划决策的重要依据.该评价组织由定量和定性两类指标构成,评价系统具有随机性和模糊性的特点.针对常用的定性和半定量评价法在处理系统的随机性和模糊性上存在顾此失彼和人为主观性强的问题,引入能同时有效反映事物随机性和模糊性的云理论,运用黄金分割率法构建5级标度的管道滑坡危险性状态标尺云和指标重要性权重云,提出定量指标的不确定性推理过程和定性指标专家群语言云转化的浮动云偏好集结算法,构建了油气管道滑坡危险性的综合评价模型并进行了工程例证分析.4处待评样本的综合评价结果与半定量法结果基本一致,并与实际相符.该模型软化了指标边界的硬划分,简化了指标数据的预处理;实现了评价的定量与定性融合和集成决策;提高了结果的精确性、合理性和可视化
文档格式:PDF 文档大小:1.01MB 文档页数:10
医生诊断需要结合临床症状、影像检查等各种数据,基于此,提出了一种可以进行数据融合的医疗辅助诊断方法。将患者的影像信息(如CT图像)和数值数据(如临床诊断信息)相结合,利用结合的信息自动预测患者的病情,进而提出了基于深度学习的医疗辅助诊断模型。模型以卷积神经网络为基础进行搭建,图像和数值数据作为输入,输出病人的患病情况。该医疗辅助诊断方法能够利用更加全面的信息,有助于提高自动诊断准确率、降低诊断误差;另外,仅使用提出的医疗辅助诊断模型就可以一次性处理多种类型的数据,能够在一定程度上节省诊断时间。在两个数据集上验证了所提出方法的有效性,实验结果表明,该方法是有效的,它可以提高辅助诊断的准确性
文档格式:PDF 文档大小:1.83MB 文档页数:9
介绍了几种主要的转炉烟气分析碳含量预报模型,并分析了其中的指数衰减模型及其三种改进算法的基本原理和优缺点。在综合三种模型优点的基础上,提出了基于“极限碳含量拟合+曲线同步更新”算法的改进指数模型。首先,利用历史炉次吹炼后期的脱碳氧效率和碳含量数据,通过指数拟合得到“历史脱碳曲线”和极限碳含量参数;其次,使用当前炉次吹炼中期的最大脱碳氧效率值对“历史脱碳曲线”的特征参数进行替换,得到当前炉次吹炼后期的“参考脱碳曲线”,再对其进行归一化处理,得到归一化的“参考脱碳曲线”;然后,采用多点校正的方法,计算当前炉次吹炼至各等距离校正点时“参考脱碳曲线”的脱碳量,并根据计算脱碳量与转炉实际脱碳量的偏差,对熔池碳含量及脱碳曲线参数进行计算与校正,得到“计算脱碳曲线”;最后,通过逐次迭代计算对“参考脱碳曲线”和“计算脱碳曲线”进行同步更新,进而实现对转炉吹炼后期熔池碳含量的精准预报。研究表明,改进的指数模型具有较高的准确率,终点碳含量预报误差在±0.02%范围内的命中率达到90%
文档格式:PDF 文档大小:997.63KB 文档页数:8
注意力缺陷多动障碍(ADHD)是儿童期最常见的精神疾病之一,在大多数情况下持续到成年期。近年来,基于功能磁共振数据的ADHD分类成为了研究热点。文献中已有的大多数分类算法均假设样本是均衡的,然而事实上,ADHD数据集通常是不平衡的。传统的学习算法会使得分类器倾向于多数类样本,从而导致性能下降。本文研究了基于不平衡神经影像数据的ADHD分类问题,即基于静息状态功能磁共振数据对ADHD进行分类。采用功能连接矩阵作为分类特征,提出了一种基于多目标支持向量机的ADHD数据分类方案。该方案将不均衡数据分类问题建模为具有三个目标的支持向量机模型,其中三个目标分别为最大化分类间隔、最小化正样本误差和最小化负样本误差,进而正负样本经验误差可以被分开处理。然后采用多目标优化的法向量边界交叉法对模型进行求解,并给出一组代表性的分类器供决策者进行选择。该方案在ADHD-200竞赛的五个数据集上进行测试评估,并与传统分类方法进行对比。实验结果表明本文提出的三个目标支持向量机分类方案比传统的分类方法效果好,可以有效的从算法层面解决数据不平衡问题。该方案不仅可用于辅助ADHD诊断,还可用于阿尔茨海默病和自闭症等疾病的辅助诊断
文档格式:PDF 文档大小:1.66MB 文档页数:10
首先介绍了高熵合金的理论基础。然后从不同的热喷涂工艺出发,综述了等离子喷涂、超音速火焰喷涂、高速电弧喷涂、冷喷涂四种技术在制备高熵合金涂层上的研究发展现状,重点从原料选用、制备工艺优化、性能研究、后处理工艺等方面对以上四种热喷涂技术制备高熵合金涂层的研究进行系统地归纳与总结。最后提出现有制备高熵合金涂层的热喷涂技术较少、热喷涂材料受限、高熵合金设计盲目这三个问题,针对性地提出了在优化已有技术的基础上开发新技术;开发高熵陶瓷、高熵非晶合金、高熵复合材料等新型热喷涂材料;沿用材料基因组理念建立高熵合金数据库这三点热喷涂制备高熵合金涂层在未来的发展趋势
文档格式:PDF 文档大小:809.81KB 文档页数:10
基于语义角色分析,提出了一种三元组涉恐事件实体属性抽取方法,为网络空间涉恐活动的监测及预警提供技术支持。首先,基于西北政法大学“反恐怖主义信息网”文本语料数据进行数据采集和清洗等预处理工作,采用朴素贝叶斯文本分类算法识别涉恐事件文本,并采用关键词提取算法TF-IDF(Term frequency-inverse document frequency,词频-逆文档频率)构建涉恐专有词库,结合自然语言处理技术构建带词性的涉恐专有词库。然后通过语义角色分析、句法依存分析,提取了主语谓语宾语关系、定语后置动宾关系、人名//地名//机构和介宾关系主谓动补4类涉恐三元组结构。最后,利用正则表达式及带词性的涉恐专有名词分析,在4类三元组短文本中提取出恐怖事件发生时间、发生地点、伤亡情况、攻击方式、武器类型和恐怖组织6类实体属性。对采集的4221篇文章数据进行实验分析,6类实体属性抽取的测评结果F1值均超过80%,对网络空间的涉恐事件监测及预警,维护社会公共安全具有重要现实意义
文档格式:PDF 文档大小:992.33KB 文档页数:9
为了提高非平衡数据集的分类精度,提出了一种基于样本空间近邻关系的重采样算法。该方法首先根据数据集中少数类样本的空间近邻关系进行安全级别评估,根据安全级别有指导的采用合成少数类过采样技术(Synthetic minority oversampling technique,SMOTE)进行升采样;然后对多数类样本依据其空间近邻关系计算局部密度,从而对多数类样本密集区域进行降采样处理。通过以上两种手段可以均衡测试数据集,并控制数据规模防止过拟合,实现对两类样本分类的均衡化。采用十折交叉验证的方式产生训练集和测试集,在对训练集重采样之后,以核超限学习机作为分类器进行训练,并在测试集上进行验证。在UCI非平衡数据集和电路故障诊断实测数据上的实验结果表明,所提方法在整体上优于其他重采样算法
文档格式:PDF 文档大小:1.28MB 文档页数:11
针对提高Wi-Fi指纹室内定位技术性能,提出了一种基于卷积神经网络(Convolutional neural networks,CNN)的信道状态信息(Channel state information,CSI)指纹室内定位方法。在离线阶段联合定位环境参考点的幅度差和相位差信息,利用CNN进行训练,保存训练后的CNN网络模型作为指纹;在线阶段,针对不同实验场景,对测试数据的幅度差信息和相位差信息进行加权处理,引入改进的基于概率的指纹匹配算法,利用待定位点的CSI信息并通过CNN网络模型预测待定位点的坐标。此外,为增强算法普适性,针对复杂室内场景,提出了双节点定位方案来提高定位精度。在廊厅和实验室室内两种不同定位场景进行了实验,信息联合定位算法分别获得了24.7 cm和48.1 cm的平均定位误差,验证了基于CNN的CSI幅度差和相位差联合定位算法的有效性
首页上页119120121122123124125126下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1259 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有