相关文档

基于文本语料的涉恐事件实体属性抽取

基于语义角色分析,提出了一种三元组涉恐事件实体属性抽取方法,为网络空间涉恐活动的监测及预警提供技术支持。首先,基于西北政法大学“反恐怖主义信息网”文本语料数据进行数据采集和清洗等预处理工作,采用朴素贝叶斯文本分类算法识别涉恐事件文本,并采用关键词提取算法TF-IDF(Term frequency-inverse document frequency,词频-逆文档频率)构建涉恐专有词库,结合自然语言处理技术构建带词性的涉恐专有词库。然后通过语义角色分析、句法依存分析,提取了主语谓语宾语关系、定语后置动宾关系、人名//地名//机构和介宾关系主谓动补4类涉恐三元组结构。最后,利用正则表达式及带词性的涉恐专有名词分析,在4类三元组短文本中提取出恐怖事件发生时间、发生地点、伤亡情况、攻击方式、武器类型和恐怖组织6类实体属性。对采集的4221篇文章数据进行实验分析,6类实体属性抽取的测评结果F1值均超过80%,对网络空间的涉恐事件监测及预警,维护社会公共安全具有重要现实意义。
团购合买资源类别:文库,文档格式:PDF,文档页数:10,文件大小:809.81KB
点击进入文档下载页(PDF格式)
已到末页,全文结束
点击下载(PDF格式)

浏览记录