点击切换搜索课件文库搜索结果(184)
文档格式:PDF 文档大小:100.84KB 文档页数:34
一、初等函数的求导问题 1.常数和基本初等函数的导数公式 初等函数的导数仍为初等函数,下面给出基本初等函数的求导公式:
文档格式:PPT 文档大小:582KB 文档页数:33
一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:901.5KB 文档页数:44
函数极限 关于函数的极限,根据自变量的变化过程,我们主 要研究以下两种情况: 一、当自变量x的绝对值无限增大时,f(x)的变化趋势, 即x→∞时,f(x)的极限 二、当自变量x无限地接近于x时,f(x)的变化趋势 即x→x时,f(x)的极限
文档格式:PPT 文档大小:901.5KB 文档页数:44
函数极限 关于函数的极限,根据自变量的变化过程,我们主 要研究以下两种情况: 一、当自变量x的绝对值无限增大时,f(x)的变化趋势,即x→∞时,f(x)的极限 二、当自变量x无限地接近于x时,f(x)的变化趋势即x→x时,f(x)的极限
文档格式:PPT 文档大小:582KB 文档页数:33
一、斯托克斯(stokes)公式 前面所介绍的 Gauss 公式是 Green 公式的推广 下面我们 从另一个角度来推广Green 公式。 Green 公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:DOC 文档大小:254.5KB 文档页数:3
5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V到K的一个线性函数(即f为V到K的一个线性映射)如同一般的线性映射,有以下事实:
文档格式:PPT 文档大小:582KB 文档页数:33
Stokes公式 一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:DOC 文档大小:226KB 文档页数:3
4.3.2线性映射的运算的定义与性质 定义线性映射的运算(加法与数域K上的数量乘法)设f:U→V,g:U→V为线性映射,定义f+g为f+g:U→V
文档格式:PDF 文档大小:4.68MB 文档页数:380
这部书的第一卷终于交印了,它既是急就章,是拖脊篇.1958年匆匆上马,现想现 写现印现讲,有时写稿不过三遍,仅仅经过起草、改、正三道手续便拿去付印有时候 校对来不及,就不校对了,因而原讲义上错误百出,疵谬迭见,所以说这是急就章.如果 能专心一志地连续地干下去,那还可能比较好些,但又经常为其它工作所打断,因而写一 段停一停,改一章放一放的情况又经常出现,所以说是沓篇紧紧松松,赶赶拖拖.因 而详略不一,前后不贯,轻重失调,呼应不周等毛病在所难免的了 情况是如此,虽然经过同志们的帮助和修改重写但还可能留下不少后遗症这样的
文档格式:PPT 文档大小:582KB 文档页数:33
Stokes公式 一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式。 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
首页上页1011121314151617下页末页
热门关键字
搜索一下,找到相关课件或文库资源 184 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有