针对联合循环发电厂(combined cycle power plant,CCPP)煤气系统因工况变化频繁带来的模型与过程不匹配的问题,提出一种基于OS-ELM (online sequential extreme learning machine)的CCPP副产煤气燃料系统在线性能预测方法.首先通过分析副产煤气系统各主要组成部件的工作原理,利用流体力学、质量守恒以及能量守恒等关系,建立起以离心压缩机、煤水分离器、冷却器等为核心部件的副产煤气系统机理模型.利用OS-ELM算法和滑动窗口技术对机理模型的输出误差进行修正,实现副产煤气系统出口参数的精确预测和模型的快速在线更新.仿真实验证明,该方法能够准确地预测副产煤气系统的输出压比和温比,并能够跟踪煤气系统工况的变化和特性的漂移,满足实际工业生产的需求