点击切换搜索课件文库搜索结果(5516)
文档格式:DOC 文档大小:48KB 文档页数:1
4.1.3线性空间的基与维数,向量的坐标 设V是数域K上的线性空间, 定义4.9基和维数 如果在V中存在n个向量a1,a2,…,an,满足 1)、a1,a2,…,an线性无关; 2)、V中任一向量在K上可表成a1,a2,…,an的线性组合
文档格式:DOC 文档大小:242.5KB 文档页数:5
第六章6-4四维时空空间与辛空间 在狭义相对论中,用三个空间坐标和一个时间坐标来刻画一个物体的运动,称为四维时 空空间 在R上规定一个特殊的度量f(a,B)=x1y1+x2y2+x3y3-x4y4(其中a=( x1,x2,x3,x4),B=(y1,y2,y3,y4),称为四维时空空间的度量 令 1000 0100 I= 0010 L000-1 在R内取定基
文档格式:PPT 文档大小:231KB 文档页数:11
1.n维向量的概念 定义2所谓数域P上一个n维向量就是由 数域P中n个有次序的数a1,a2,…,an所组 成的数组,这n个数称为该向量的n个分量,第 i个数a称为第i个分量 分量全为实数的向量称为实向量, 分量全为复数的向量称为复向量
文档格式:DOC 文档大小:214.5KB 文档页数:2
命题如果n维空间V上的线性变换A的矩阵相似于对角矩阵,则A在任一不变子空 间M上(的限制)的矩阵相似于对角矩阵。 证明若V上的线性变换A的矩阵相似于对角矩阵,则V可以分解为特征子空间的直 和。记A的所有特征值为,2,2,则V=V4V,取M=nV, 断言M=M1M2⊕M,首先要证明
文档格式:DOC 文档大小:226KB 文档页数:3
4.3.2线性映射的运算的定义与性质 定义线性映射的运算(加法与数域K上的数量乘法) 设f:U→V,g:U→V为线性映射,定义f+g为 f+g:U→V, af(a)+g(a)(a∈U) 定义kf(Vk∈K)为 kf:u→v akf(a)(a∈U) 说明f+g与kf仍为线性映射。 命题Hom(U,V)在加法和数乘下构成数域K上的线性空间。 证明逐项验证
文档格式:PPT 文档大小:1MB 文档页数:32
向量代数 一、向量的概念 向量:既有大小又有方向的量 向量表示:a或MM2 向量的模:向量的大小a1或|MM2 单位向量:模长为1的向量.a或MM 零向量:模长为0的向量
文档格式:DOC 文档大小:208KB 文档页数:4
第四章线性空间与线性变换 1线性空间的基本概念 4.1.1线性空间的定义及例 1、线性空间的定义 定义4.1线性空间 设V是一个非空集合,且V上有一个二元运算“+”(V×V→V),又设K为数 域,V中的元素与K中的元素有运算数量乘法“·”(K×V→V),且“+”与“·”满足如下性质: 1、加法交换律a,B∈V,有a+B=B+a; 2、加法结合律a,B,y∈V,有(a+B)+y=a+(B+y)
文档格式:PDF 文档大小:4.7MB 文档页数:508
1.区域等概念 邻域U(P,8)={P|PP|<8},内点,边界点,开集,(开)区 域闭区域,边界点,有界点集,有界(开或闭)域,n维空间{(x1,x2, …,xn)},它的点及坐标x,n维空间中两点P(x1,x2,…,xn)与Q (y,y,…y)间的距离 y2-dta 等简单概念(叙述略,见教材)
文档格式:DOC 文档大小:854.5KB 文档页数:19
线性函数 定义1设V是数域P上的一个线性空间,f是V到P的一个映射,如果f 满足 1)f(a+)=f(a)+f() 2) f(ka)=(a), 式中a,B是V中任意元素,k是P中任意数,则称f为V上的一个线性函数 从定义可推出线性函数的以下简单性质: 1.设f是v上的线性函数,则f(0)=0,f(-a)=-f(a) 2.如果B是a1,a2…,a的线性组合:
文档格式:PDF 文档大小:53.18KB 文档页数:1
第7章数值积分 1.确定求积结点x1,x2,使求积公式 f(x)dxlf(-1)+2f(x)+3f(x2)+(p,f)代数精度尽量高。 2.确定求积系数A,A2和求积结点x1,x2,使求积公式
首页上页139140141142143144145146下页末页
热门关键字
搜索一下,找到相关课件或文库资源 5516 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有