点击切换搜索课件文库搜索结果(893)
文档格式:PPT 文档大小:336KB 文档页数:20
非线性科学是当今科学发展的一个重要研究方向,而非线性方程的求根也成了 个不可缺的内容。但是,非线性方程的求根非常复杂。 通常非线性方程的根的情况非常复杂:
文档格式:PPT 文档大小:310KB 文档页数:28
直接法得到的解是理论上准确的,但是我们可以看得出,它们的计算量都是n3 数量级,存储量为η2量级,这在n比较小的时候还比较合适(n<400),但是对于现 在的很多实际问题,往往要我们求解很大的n的矩阵,而且这些矩阵往往是系数矩阵 就是这些矩阵含有大量的0元素。对于这类的矩阵,在用直接法时就会耗费大量的时 间和存储单元。因此我们有必要引入一类新的方法:迭代法
文档格式:PPT 文档大小:541KB 文档页数:37
实际中,很多问题的数学模型都是微分方程。我们可以研究它们的一些 性质。但是,只有极少数特殊的方程有解析解。对于绝大部分的微分方程是 没有解析解的。 常微分方程作为微分方程的基本类型之一,在自然界与工程界有很广泛 的应用。很多问题的数学表述都可以归结为常微分方程的定解问题
文档格式:PPT 文档大小:341.5KB 文档页数:34
如果线性方程组的系数行列式不为零,即det(A)≠0, 则该方程组有唯一解。由克莱姆(cramer)法则,其解为 det() (i=1,2,…n det(A) 这种方法需要计算n+1个n阶行列式并作n次除法,而每个 n阶行列式计算需作(n-1)n!次乘法,计算量十分惊人
文档格式:PPT 文档大小:253.5KB 文档页数:42
直接法:经过有限次运算后可求得方程组精确解的方 法(不计舍入误差!) 迭代法:从解的某个近似值出发,通过构造一个无穷序 列去逼近精确解的方法。(一般有限步内得不到精确解) 直接法比较适用于中小型方程组。对高阶方程组, 既使系数矩阵是稀疏的,但在运算中很难保持稀疏性, 因而有存储量大,程序复杂等不足
文档格式:DOC 文档大小:530.5KB 文档页数:28
1引言 问题的提出 在实际问题中常遇到这样的函数 J=(x),其在某个区间[a,b上 是存在的。但是,通过观察或测量或 试验只能得到在[,b区间上有限个 离散点x0x1xn上的函数值 y;=f(x;), (=0,…,n)或者∫(x)的函数表达 式是已知的,但却很复杂而 不便于计算,希望用一个简单的函数 来描述它
文档格式:DOC 文档大小:382.5KB 文档页数:25
3.3、差分与等距牛顿插值 一、公式 插值节点为等距节点:
文档格式:DOC 文档大小:295KB 文档页数:19
5-1多项式插值的问题 前面根据区间[ab上给出 的节点做插值多项式Ln(x) 近似f(x),一般总认为L1(x)的次 数n越高逼近(x)的精度 越好,但实际上并非如此。这是 因为对任意的插值节点 ,当n>0时,L(x)不一定收敛 到∫(x),本世纪初龙格 ( Runge)就给出了一个等距节 点插值多项式Ln(x)不收 敛的f(x)的例子。他给出的函数 为f(x)=1(1+x)
文档格式:DOC 文档大小:399KB 文档页数:26
1.问题的提出 用插值的方法对这一函数进 行近似,要求所得到的插值多项式 经过已知的这n+1个插值节点; 在n比较大的情况下,插值多项式 往往是高次多项式,这也就容易出 现振荡现象(龙格现象),即虽然 在插值节点上没有误差,但在插值 节点之外插值误差变得很大,从 “整体”上看,插值逼近效果将变 得“很差”。于是,我们采用函数 逼近的方法
文档格式:DOC 文档大小:350KB 文档页数:22
若首项系数an≠0的n次多项式 0n(x),满足 ≠k (0,9)=p(x),(x)(x)dx 2k=0,12…) 就称多项式序列9,1,…n,在 [a,b上带权p(x)正交,并称o,(x) 是[a,b上带权(x)的n次正交多项 式。 构造正交多项式的格拉姆一施密 特( Gram-Schmidt)方法 定理:按以下方式定义的多
首页上页1314151617181920下页末页
热门关键字
搜索一下,找到相关课件或文库资源 893 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有