点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:753.5KB 文档页数:24
链式规则 设z=f(x,y)(x,y)∈D,是区域D,CR2上的二元函数,而 g:D→R2, (u,v)→(x(u,v),y(uv) 是区域DCR2上的二元二维向量值函数。如果g的值域g(D)=D 那么可以构造复合函数 =fog= f[x(u,v), y(u,v), (u,).o 复合函数有如下求偏导数的法则
文档格式:PPT 文档大小:377KB 文档页数:15
紧集上的连续映射 为了将一元连续函数在闭区间上的重要性质推广到多元连续函 数,为此先定义多元函数在点集的边界点连续的概念。 定义 11.3.1 设点集 K  n R ,f : K→ m R 为映射(向量值函数), x K 0 
文档格式:PPT 文档大小:917.5KB 文档页数:33
多元函数 定义11.2.1设D是R”上的点集,D到R的映射 f:D→R x}2 称为n元函数,记为z=f(x)。这时,D称为f的定义域,f(D) z∈R|z=f(x),x∈D}称为f的值域,={(x,z)∈R|z=f(x),x∈D称为 f的图像
文档格式:PPT 文档大小:1.2MB 文档页数:40
到目前为止, 我们所学习的只是一元函数的分析性质。但在现实 生活中,除了非常简单的情况之外,可以仅用一个自变量和一个因变 量的变化关系来刻画的问题可以说是非常少的。比如像物理学中研究 质点运动这么一个相对较为容易的问题,也需要用到确定空间位置的 三个坐标变量 x、y、z 和一个时间变量 t 以及多个函数值(如位置、 速度、加速度、动量等),更不用说在各种不同的学科研究中会遇到 更为复杂的问题。这种多个自变量和多个因变量的变化关系,反映到 数学上就是多元函数(或多元函数组,即向量值函数)
文档格式:PDF 文档大小:166.97KB 文档页数:24
链式规则 设 = yxyxfz ),(),,( ∈ Df 是区域Df ⊂ 2 R 上的二元函数,而 : g g D → 2 R , 6 vuyvuxvu )),(),,((),( 是区域Dg ⊂ 2 R 上的二元二维向量值函数。如果 g 的值域 g D( ) g ⊂ Df , 那么可以构造复合函数 = fz D g = vuvuyvuxf ),()],,(),,([ ∈ Dg
文档格式:PDF 文档大小:142.81KB 文档页数:15
紧集上的连续映射 为了将一元连续函数在闭区间上的重要性质推广到多元连续函 数,为此先定义多元函数在点集的边界点连续的概念。 定义 11.3.1 设点集 K ⊂ n R ,f : K→ m R 为映射(向量值函数), x K 0 ∈ 。如果对于任意给定的ε > 0,存在δ > 0,使得当 0 xx K ∈O( ,) δ ∩ 时
文档格式:PDF 文档大小:266.22KB 文档页数:33
多元函数 定义 11.2.1 设 D 是 n R 上的点集,D 到 R 的映射 f : D → R , x 6 z 称为 n 元函数,记为 z f = ( ) x 。这时,D 称为 f 的定义域, f ( ) D = { R | ( ), } z zf ∈ = ∈ xx D 称为 f 的值域,Γ= 1 {(,) R | ( ), } n z zf + x x ∈= ∈x D 称为 f 的图像
文档格式:PPT 文档大小:1.12MB 文档页数:54
一、全微分 我们以二元函数为主,进行讲解,所得结 论可容易地推广至三元和三元以上的函数中
文档格式:PPT 文档大小:82KB 文档页数:8
一、E(Y)的置信区间 二、Y的置信区间
文档格式:PPT 文档大小:203.5KB 文档页数:23
一、拟合优度检验 二、方程的显著性检验(F检验) 三、变量的显著性检验(t检验) 四、参数的置信区间
首页上页1516171819202122下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有