点击切换搜索课件文库搜索结果(198)
文档格式:DOC 文档大小:509KB 文档页数:9
第四章导数的应用 (The Applications Derivative of function) 第八讲微分中值定理 阅读:第4章4.1pp.8088 预习:第4章4.2pp.8995,第4章4.396-111 练习pp-9习题4.1:1至4;5,(1)81),(2)9,(2) 10,(2),(4) 作业pp-89习题4.1:5,(2);8,(3),()9,(1):10,(1),(3 重要通知: (1)第九周星期六下午在开放实验室进行微积分(小测验: 测验内容为罗比塔法则及以前的知识 测验方式:计算机考试,时间一小时。 每班具体考试时间下周考前通知。 (2)请每位同学务必在下周星期二以前,到网上 (网址为:info. Emathe.edu.cn) 阅读机考说明,并试做摸拟试卷
文档格式:PPT 文档大小:917.5KB 文档页数:62
4.1数值微积分 4.1.1 近似数值极限及导数 4.1.2 数值求和与近似数值积分 4.1.3 计算精度可控的数值积分 4.1.4 函数极值的数值求解 4.1.5 常微分方程的数值解 4.2矩阵和代数方程 4.2.1 矩阵运算和特征参数 4.2.2 矩阵的变换和特征值分解 4.2.3 线性方程的解 4.2.4 一般代数方程的解 4.3 概率分布和统计分析 4.3.1 概率函数、分布函数、逆分布函数和随机数的发生 4.3.2 随机数发生器和统计分析指令 4.4 多项式运算和卷积 • 4.4.1 多项式的运算函数 • 4.4.2 多项式拟合和最小二乘法 • 4.4.3 两个有限长序列的卷积
文档格式:DOC 文档大小:445KB 文档页数:8
第六章定积分 (The definite integration) 第十四讲定积分概念及性质 课后作业: 阅读:第六章6.1,6.2:pp158--166 预习:6.3,6.4:6--182 练习pp.66-16:习题6.2:1,(1),(3)23,(1);4,(1)(3)(5) 5,(1),(5) 作业p.166168:习题6.2:1,(5);3,(2)4,(2),(4),(6); 5,(2),(3),(6);6;7. 6-1定积分概念与性质 6-1-1问题引入 一定积分(Riemann)的背景:两个曲型问题。 (1)求曲线所围的面积: 函数f(x)在有界区间[a,b]非负连续,由Ox轴、直线x=a、 x=b(a
文档格式:DOC 文档大小:307.5KB 文档页数:6
第六章定积分 (The definite integration) 第十五讲 Newton-Leibniz-公式与定积分的计算 课后作业: 阅读:第六章6.:pp6--17 预习:6.4,6.5,6:p176-19 练习pp174176习题6.3:1,7,8中的单数序号小题 作业pp.174176:习题6.3:1,(2),(6)2,(2)4;5;7,(4^,(6),(10) (1)8(,114;1;1720 6-3牛顿(Newton)一莱布尼兹(Leibnitz)公式 6-3-1变上限定积分 (一)变上限积分 设f∈Ra,b,x∈[a,b],F(x)=f(t)dt是定义在[a,b]上 a 的一个函数,称之为变上限积分 这里有一个十分重要的结果:变上限积分总是连续函数
文档格式:DOC 文档大小:503.5KB 文档页数:8
第六章不定积分 CThe indefinite integration 6-1原函数和不定积分 6-1-1原函数概念及性质 6-1-2不定积分概念及性质 5-1-3基本积分表及凑微分法 6-2不定积分方法 6-21变量置换法 6-2-2分部积分法 63有理函数的积分 6-3-1最简分式的积分 6-3-2有理函数的积分 6-4其他可积成有限形式的函数类 6-4-1三角有理式的积分 第十四讲原函数及不定积分 课后作业: 阅读:第六章61:pp206-210;6.2:p2ll-214 预习:第六章62:pp214-216;63:pp218-22:6.4:pp224-230 练习pp.210-21:2习题61 复习题全部;习题1;2;3(1)-(8)
文档格式:DOC 文档大小:133.5KB 文档页数:2
第二章多元微分学 11-Exe-1习题讨论(I 11-Exe-1-1讨论题 11-Exe-1-1参考解答 习题讨论 题 目 1f(x,y)=√试讨论 (1)f(x,y)在(0,0)处的连续性; (2)∫(x,y)在(0,0)处的两个偏导数是否存在 (3)f(x,y)在(0,0)处的可微性 2.证明若函数∫(x,y)在区域D中的任一点都关于x连续偏导数 ∫(x,y)存在且在D上有界则f(x,y)在D上连续 3.证明若函数f(x,y)在区域D中的任一点都关于x连续,偏导数 f(x,y)存在且在D上有界则f(x,y)在D上连续 4.证明若函数∫(x,y)关于x的偏导数在(x0,y0)点连续 ∫(x,y0)存在则f(x,y)在(x,y0)处可微
文档格式:DOC 文档大小:370KB 文档页数:6
定积分应用以几何应用:求面积,弧长,旋转体体积和面积;导物理应用:主要是求 变力作功,图形的重心为主。这些题目以书上练习题的难度为限。,可选作其中一些。 下面的题可选二、三个作提高题,切不可多用 谭泽光2002,12,6 定积分应用 设有曲线族y=kx2(k>0),对于每个正数k(k≥_2曲线y=kx2与曲线 y=sinx(0≤x≤3)交于唯一的一点(t,sin)(其中t=(k),用S1表示曲线y=kx2 与曲线y=sinx(0x≤x)围成的区域的面积:S2表示曲线y=smx,y =sint与
文档格式:DOC 文档大小:1.03MB 文档页数:17
一、定积分计算 1.设f(x)=,edx,求xf(x)d 2.设A=,试用表示:(1)B= 1t-a-1 (2 (1+t) 3.设feC,,证明:f(d=(x-x2)f(x)d 4.计算定积分xln(1+e)dx 二、定积分应用 1.设有曲线族y=kx2(k>0),对于每个正数k(k2),曲线y=kx2 与曲线y=sinx(0≤xs)交于唯一的一点(t,sint)(其中t=t()) 用S1表示曲线y=kx2与曲线y=sinx(0≤x≤)围成的区域的面积; S2表示曲线y=sinx,y=sint与x=围成的区域的面积求证在上述 曲线族中存在唯一的一条曲线L,使得S1+S2达到最小值 2.点A(3,1,-1)是闭曲面S1:x2+y2+z2-2x-6y+4z=10
文档格式:DOC 文档大小:283.5KB 文档页数:5
第二章多元函数微分学 第一节多元连续函数 2-1-1点集拓扑初步 2-1-1-1度量空间 2-1-1-2邻域、开集与闭集 2-1-1-3集合的紧致性、完备性与连通性 第一讲点集拓扑初步 课后作业: 复习阅读:第一章pp.01--21,己在代数中学过,请抽时间复习。 阅读:第二章11,1.2,1.3,1.4:pp.22-28 预习:第二章2,22:pp29-38 作业:第二章习题1:pp.28-29:1,(2),(3);2,(2),(4);3;5. 2-1-1点集拓扑初步 拓扑与线性空间、代数等概念一样,是一种数学结构。它与线性空间是研
文档格式:DOC 文档大小:241KB 文档页数:5
第七章定积分的应用 (The Applications of definite integration 第二十讲定积分在物理等方面的应用 课后作业: 阅读:第七章74:pp.211-1215;7.5:215-219 预习:第八章8.1;8.2:pp.220-237 作业:pp218--219:第七章综合1;6;13:16:;18;20 72定积分在物理等方面的应用 721变力作功问题 质量为m的物体,在外力F=F(x)的作用(外力的方向与x轴的 夹角为)下,沿x轴在从A(a,0)位移到B(b,0),求外力所作的功W dw=F(x) cos.dx=W=F()-cos0dx 例1,在质量为m质点引力作用下,单 位质量质点运动所作的功
首页上页1314151617181920下页末页
热门关键字
搜索一下,找到相关课件或文库资源 198 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有