点击切换搜索课件文库搜索结果(24)
文档格式:DOC 文档大小:232.5KB 文档页数:8
一、解答下列各题 (本大题共3小题,总计13分) 1、(本小题4分) 证明:f(x)= arctanx在[0,1]上连续,在(0,1)可导 即f(x)在[0,1]上满足拉格朗日中值定理的条件 4分 又f(x)=、1
文档格式:DOC 文档大小:292KB 文档页数:5
作业参考答案 第一章1-2,1-3,1-4,1-6,1-12,1-16 1-2 t+1-2≤t≤0 (a)解:f(t)= t+10≤t≤2 2 用u(t)的形式表示为:1-+2)u(- (b)解:f(t)=u(t)+u(t-1)+u(t-2) (c)解:f(t)=Esinu(t)-u(t-T),其中= 2ππ
文档格式:DOC 文档大小:88KB 文档页数:4
一、解答下列各题(本大题共3小题,总计13分) 1、(本小题4分) 对函数f(x)= arctan在[0,1]上验证拉格朗日中值定理的正确性
文档格式:DOC 文档大小:232.5KB 文档页数:8
试卷号:B020017(答案 注:各主观题答案中每步得分是标准得分,实际得分应按下式换算: 第N步实际得分一本题实际得分解答第N步标准得分 解答总标准得分 一、解答下列各题 (本大题共3小题,总计13分) 1、(本小题4分) 证明:f(x)= arctanx在[0,1]上连续,在(0,1)可导 即f(x)在[0,1]上满足拉格朗日中值定理的条件
文档格式:DOC 文档大小:40.5KB 文档页数:2
一、判断题(在括号内划“√”或“×”) ( )1、联结词集合{↓,﹁}是联结词全功能集。 ( )2、x F(x) →y F(y)是永真式。 ( )3、 “x+4>0”是简单命题。 ( )4、集合 A, B,若 A – B=Φ,则 B=A。 ( )5、若 R 为具有自反性的二元关系,则 R 的逆关系也具有自反性
文档格式:DOC 文档大小:860.5KB 文档页数:13
2008年全国硕士研究生入学统一考试数学一试题 一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一 项符合题目要求,把所选项前的字母填在题后的括号内 (1)设函数f(x)=n(2+t)dt,则f(x)的零点个数() (A)0(B)1(C)2 (D)3
文档格式:DOC 文档大小:911.5KB 文档页数:10
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项 符合题目要求,把所选项前的字母填在题后的括号内 (1)设f(x)=x2(x-1)(x-2),求f(x)的零点个数() (A)0 (B)1 (C)2 (D)3 解:(D)
文档格式:PDF 文档大小:164.44KB 文档页数:5
一.(本题共40分)给定有理数域上的多项式f(x)=x4+3x2+3 1.(本题5分)证明f(x)为中的不可约多项式 2.(本题5分)设a是f(x)在复数域C内的一个根.定义 Qa]= {ao +aa+a2a2}. 证明:对于任意的g(x)∈x],有g(a)∈a];又对于任意的B,ya,有 Bry Qa 3.(本题5分)接上题.证明:若B∈Qa],B≠0,则存在∈a],使得y=1. 4.(本题15分)找出f(x)的一个sturm序列.判断f(x)有几个实根. 5.(本题10分)求下面三阶方阵在有理数域Q上的最小多项式:
文档格式:DOC 文档大小:1.82MB 文档页数:40
1.设曲线L是上半圆周x2+y2=2x,则xdl=π L 解法1由于L关于直线x=1对称,所以∫(x-1)dl=0,从而 L xdl=f[(x-1)+1l=f(x-1)dl+fdl=0+π=π L L L =1+ cost, 解法2令L:y=sint (0≤t≤),则 xdl =Jo (+cost)(-sint)2+(cost)dt=. L 解法3设曲线L的质量分布均匀,则其重心的横坐标为x=1又因为 ∫xdl xdl x= d 1么 π 所以∫xdl=π。 L 2.设L是上半椭圆周x2+4y2=1,y≥0,是四分之一椭圆周 x2+4y2=1,x≥0,y≥0,则 (A)(+ y) (+y) (B) Ixydl =2J, xydl () SLx2dl, y2dl (D)(x+y)2dl =2J (x2+y2) [] 答D
文档格式:DOC 文档大小:989.5KB 文档页数:12
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项 符合题目要求,把所选项前的字母填在题后的括号内 (1)设函数f(x)在区间[-1,1]上连续,则x=0是函数g(x)=的() (A)跳跃间断点 (B)可去间断点 (C)无穷间断点 (D)振荡间断点 解:B
上页123下页
热门关键字
搜索一下,找到相关课件或文库资源 24 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有