点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:311.83KB 文档页数:34
反常积分 前面讨论 Riemann 积分时,假定了积分区间[, ] a b 有限且被积函 数 f x( )在[, ] a b 上有界,但在实际应用中经常会碰到不满足这两个条 件,却需要求积分的情况。所以,有必要突破 Riemann 积分的限制 条件,考虑积分区间无限或被积函数无界的积分问题,这样的积分称 为反常积分(或广义积分),而以前学过的 Riemann 积分相应地称 为正常积分(或常义积分)
文档格式:PPT 文档大小:563KB 文档页数:23
在前面所讨论的定积分事实上是有条件 的:一是积分区间是有限区间,二是被积函数 在积分区间上有界。但实际问题常常要突破这 两个前提,因此需要对定积分作如下两种推广 :无穷区间上的积分——无穷限积分,无界函 数在有限区间上的积分——无界函数积分或瑕 积分,统称为广义积分或旁义积分,以前讨论 过的定积分称为常义积分
文档格式:PPT 文档大小:560.5KB 文档页数:23
在前面所讨论的定积分事实上是有条件 的:一是积分区间是有限区间,二是被积函数 在积分区间上有界。但实际问题常常要突破这 两个前提,因此需要对定积分作如下两种推广 :无穷区间上的积分无穷限积分,无界函 数在有限区间上的积分无界函数积分或瑕 积分,统称为广义积分或旁义积分,以前讨论 过的定积分称为常义积分
文档格式:PPT 文档大小:1.4MB 文档页数:62
第一节 定积分的概念 一、定积分的实际背景 二、定积分的概念 三、定积分的几何意义 四、定积分的性质 第二节 微积分基本公式 一、变上限的定积分 二、牛顿-莱布尼茨(Newton-Leibniz)公式 第三节 定积分的积分方法 一、定积分的换元积分法 二、定积分的分部积分法 第四节 广义积分 一、无穷区间上的广义积分 二、无界函数的广义积分
文档格式:PPT 文档大小:835.5KB 文档页数:19
前面讨论的定积分不仅要求积分区间[a,b]有限,而且 还要求被积函数f(x)在[a,b上有界然而实际还经常遇到 无限区间或无界函数的积分问题.这两类积分统称为广义 积分.其中前者称为无穷积分,后者称为瑕积分 对于广义积分的计算是以极限为工具来解决的,即先 将广义积分转化为定积分,再对该定积分求极限
文档格式:PDF 文档大小:267.2KB 文档页数:16
§4.1 定积分的概念 §4.2 定积分的计算 §4.3 定积分的两个积分法则 §4.4 定积分的应用 §4.6 广义积分
文档格式:DOC 文档大小:68KB 文档页数:5
一、教学目标与基本要求 1、教学目标 本章从曲顶柱体的体积和平面薄片的质量这两个实际例子引入二重积分的概念,不 加以证明地指出二重积分存在的充分条件对二重积分的性质只加以叙述,而不予证明, 将三重积分自然地看成是二重积分的推广总的精神就是对概念和性质不作分析上的严 格要求,而把重点放在讨论二重积分和三重积分的计算上,计算二重积分和三重积分的 基本途径是将它们化为二次与三次积分,但在直角坐标系下计算二次与三次积分有时会 比较困难
文档格式:PPT 文档大小:1.03MB 文档页数:37
定积分的换元法 上一节我们建立了积分学两类基本问题 之间的联系—微积分基本公式,利用这 个公式计算定积分的关键是求出不定积分 ,而换元法和分部积分法是求不定积分的 两种基本方法,如果能把这两种方法直接 应用到定积分的计算,相信定能使得定积 分的计算简化,下面我们就来建立定积分 的换元积分公式和分部积分公式
文档格式:PPT 文档大小:835.5KB 文档页数:19
前面讨论的定积分不仅要求积分区间[a,b]有限,而且 还要求被积函数f(x)在[a,b]上有界.然而实际还经常遇到 无限区间或无界函数的积分问题.这两类积分统称为广义 积分.其中前者称为无穷积分,后者称为瑕积分. 对于广义积分的计算是以极限为工具来解决的,即先 将广义积分转化为定积分,再对该定积分求极限
文档格式:PPT 文档大小:1.03MB 文档页数:37
定积分的换元法 上一节我们建立了积分学两类基本问题 之间的联系微积分基本公式,利用这 个公式计算定积分的关键是求出不定积分 ,而换元法和分部积分法是求不定积分的 两种基本方法,如果能把这两种方法直接 应用到定积分的计算,相信定能使得定积 分的计算简化,下面我们就来建立定积分 的换元积分公式和分部积分公式
上页12345678下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有