点击切换搜索课件文库搜索结果(405)
文档格式:PDF 文档大小:357KB 文档页数:4
以Pt-Ru/c和Pt/C分别为阳极、阴极催化剂,自制了膜电极,并组装了直接甲醇燃料电池(DMFC)以及测试系统.通过稳态电流-电压极化曲线法,研究了甲醇流量、甲醇浓度、甲醇温度以及空气增湿温度对DMFC电化学性能的影响.研究结果表明。在电池温度为25℃以及阴极为自然空气的条件下,当DMFC输出电压为0.22V时,其输出电流密度和峰值功率密度分别可以达到68mA·cm-2和14.8mw·cm-2,且各因素对电池性能存在着明显的影响.实验的最佳运行工艺参数:甲醇流量为2mL·min-1,甲醇浓度为2mol·L-1,甲醇温度为30℃,空气增湿温度为40~60℃
文档格式:PDF 文档大小:893.66KB 文档页数:5
采用极化曲线、电化学交流阻抗等技术对X70钢在含水量20%~34%(质量分数)的大港滨海盐渍土中的腐蚀行为进行研究.结果表明:土壤含水量对X70钢腐蚀行为影响显著;水质量分数为25%时X70钢发生局部腐蚀,水质量分数高于30%时发生均匀腐蚀;随着土壤中含水量的增加,腐蚀电流密度先增后减,在水质量分数为25%时腐蚀速率达到最大;含水量较低时,X70钢在大港滨海盐渍土中腐蚀的电化学阻抗谱会出现低频感抗弧,随着含水量的增加,低频感抗弧消失,表现为单一的容抗弧
文档格式:PDF 文档大小:595.93KB 文档页数:5
利用高温高压釜对N80钢进行了两种温度、不同CO2分压下的腐蚀实验.测量了腐蚀速率,观察了腐蚀产物膜的宏观形貌及去除腐蚀产物膜后金属基体的表面状态,用扫描电镜(SEM)观察了腐蚀产物膜的微观形貌并测量了膜的厚度,对在不同条件下成膜的N80钢进行了电化学极化曲线与交流阻抗谱(EIS)分析.结果表明CO2分压升高,腐蚀产物膜保护性能提高,但由于介质的腐蚀性增强,腐蚀速率上升;膜局部缺陷是导致金属基体表面点蚀的主要诱因,CO2分压升高有利于减少65℃时膜表面的局部缺陷;在90℃下腐蚀产物膜的保护性能比65℃下对CO2分压的变化更为敏感
文档格式:PDF 文档大小:567.1KB 文档页数:5
为了降低2024铝合金在海水中的缝隙腐蚀敏感性,采用浸泡和动电位极化、电化学阻抗等研究了氯化镧(LaCl3)对该铝合金缝隙腐蚀行为的影响,并通过原子力显微镜对缝隙试样内、外腐蚀产物膜的形貌进行了观察.结果表明:当海水中LaCl3的质量浓度超过2.0 g·L-1以后,它能有效地减缓2024铝合金在海水中的缝隙腐蚀.这主要是因为LaCl3减缓了缝隙的阴极反应速率,降低了缝隙内、外的氧浓度差,且缝隙内、外生成的均匀致密的腐蚀产物膜降低了Cl-侵蚀性,这些因素抑制了缝隙的萌生与扩展,提高了2024铝合金在海水中的抗缝隙腐蚀能力
文档格式:PDF 文档大小:489.92KB 文档页数:5
以LiNO3和TiO2为初始反应物,固相法合成了Li4Ti5O12(M1).X射线衍射实验结果表明,所得粉体为较纯的尖晶石结构的Li4Ti5O12复合氧化物.Li4Ti5O12电极以35mA·g-1电流密度恒流充放电,首次放电容量达到170mAh·g-1,接近理论容量,首次充放电效率为92%.其在大电流密度下充放电性能良好,以175,350,875mA·g-1的电流密度放电,放电容量分别达到了151,140,115mAh·g-1;与传统方法使用LiOH和TiO2固相合成的Li4Ti5O12(M2)加以比较,3个倍率下的放电容量分别提高了约5%,10%和26%.循环伏安曲线表明:M1电极电位极化小,可逆性好,电极电化学活性高;M1电极嵌入/脱出锂后交流阻抗测试表明其电化学反应阻抗分别为16和20Ω
文档格式:PDF 文档大小:1.01MB 文档页数:7
采用线性极化电阻技术和交流阻抗技术研究了锅炉水冷管材在过氧化氢溶液钝化条件下的电化学特征,结合SEM电子扫描技术对不同钝化条件下的钝化膜成膜形貌进行观察测量.实验结果表明,在柠檬酸漂洗后采用过氧化氢钝化的过程中,当过氧化氢的质量分数为0.1%,溶液pH为9.5,亚铁离子的质量浓度为100 mg·L-1且氯离子的质量浓度低于50 mg·L-1时钝化效果最好,钝化膜成膜形貌较为完整,管材抵抗外界腐蚀的能力最强
文档格式:PDF 文档大小:424.75KB 文档页数:5
用自制的气体吸附测试装置进行了在电场作用下镍薄膜吸附氮气和氢气的实验.氮气吸附实验结果表明,充电吸附和放电解吸过程中的电信号可准确表征气体的吸附情况.氢气吸附实验结果表明,电场可以有效提高镍电极对氢气分子的吸附作用,电场强度越大,氢气吸附量越大.在电场强度不变时,提高氢气压力会对氢气吸附量带来较弱的提高.在电场作用下,氢气分子会被极化,从而使氢气分子更容易被吸附,并且有助于形成氢团簇
文档格式:PDF 文档大小:1.38MB 文档页数:6
采用ER2209焊丝对双相不锈钢SAF2205与微合金管线钢X65进行熔化极气体保护焊接,获得了具有良好力学性能的异种钢焊接接头.焊接接头不同区域显微组织观察和成分分析表明,微合金钢与不锈钢焊缝间存在异金属熔合区和第二类边界线,熔合区存在Ni、Cr的浓度梯度分布,且硬度高于两侧的焊缝和母材.通过宏观拉伸、缺口拉伸和低温冲击实验测试了焊接接头的力学性能,并获得了接头不同部位在1mol·L-1 NaCl溶液中的极化曲线.拉伸试样断裂发生于强度相对较低的微合金钢母材.焊缝金属的缺口拉伸强度和冲击韧性均略低于双相不锈钢母材,但腐蚀电位略高于母材.微合金钢热影响区与母材力学性能相当,腐蚀电位略高于母材
文档格式:PDF 文档大小:1.06MB 文档页数:6
采用脉冲电镀法在黄铜表面制备出具有(111)、(200)和(220)晶面择优生长织构的纳米晶纯镍镀层.采用扫描电镜对镀层的显微形貌进行观察,采用X射线衍射对不同晶面织构的择优性进行表征,并对镀层在3.5%NaCl溶液中的动电位极化曲线和交流阻抗谱进行了测试,研究不同织构镀层的耐蚀性能.不同织构镀层的耐蚀性能存在显著差异:具有(220)强织构的镀层耐蚀性最差,其自腐蚀电流密度最大,为1.23μA·cm-2,镀层的电荷转移电阻为2.09kΩ·cm2;具有(200)强织构的镀层耐蚀性能最佳,镀层的电荷转移电阻为27.32kΩ·cm2,自腐蚀电流密度为0.15μA·cm-2;具有(111)织构镀层的耐蚀性居中.认为织构引起的表面胞状物的差别是造成纯镍镀层耐蚀性能不同的原因
文档格式:PDF 文档大小:1.19MB 文档页数:8
微生物燃料电池(Microbial fuel cells, MFCs)是一种绿色能源技术,通过微生物的催化氧化代谢污水中的有机物同时产生电能,具有清洁环境和产电的双重优势,为可生物降解及可循环利用的废弃物转变成清洁能源提供了潜在的机会,在环境治理和能源利用方面表现出较好的应用前景。然而,目前相对较低的产电效率限制了MFCs的实际应用,其中阳极电极是产电微生物富集和传递电子的重要场所,与电池极化、电子导电性、生物相容性密切相关,是影响电池性能和运行成本的关键因素。碳纳米材料具有导电性好、比表面积大、孔隙率高、成本低等特点,被认为是微生物燃料电池重要的阳极材料,得到了广泛的研究和关注。本文主要从阳极电极种类、电极结构设计和电极材料改性等方面总结改善电极生物相容性、增加产电微生物附着量、提高反应活性位点的方法,并对提高产电性能的机理进行论述。最后对碳基电极材料进行展望,以期为制备高电化学活性的阳极材料提供理论指导
首页上页1819202122232425下页末页
热门关键字
搜索一下,找到相关课件或文库资源 405 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有