then there exists AE R\ such that (Kuhn-Tucker condition) G(s') =0 and 1. Lagrange Method for Constrained Optimization FOC: D.L(,\)=0. The following classical theorem is from Takayama(1993, p.114). Theorem A-4 (Sufficieney). Let f and, i= ,..m, be quasi-concave, where Theorem A-1. (Lagrange). For f: and G\\, consider the following G=(.8 ) Let r' satisfy the Kuhn-Tucker condition and the FOC for (A.2). Then, x' problem is a global maximum point if max f() (1)Df(x') =0, and f is locally twice continuously differentiable,or