点击切换搜索课件文库搜索结果(899)
文档格式:PDF 文档大小:110.98KB 文档页数:19
6.1定积分与不定积分 给定非负函数y=f(x),定义于闭区间[a,b],如果我们要求函数图形y=f(x)下边 曲边梯形面积,就需要定积分[f(x)dtx。 定闭区间[a,b]内任意时刻的即时速度y=∫(1),求[a,b]内走过路程,也需要定 积分O)d 定义函数f(x)定义在[a,b上
文档格式:PPT 文档大小:139.5KB 文档页数:7
1设E是直线上的一有界集,mE>0,则对任意小 于mE的正数,恒有子集E1,使m*E1=c 证明:由于E有界,故不妨令EC[a,b 令f(x)=m*(en[a,x),则f(a)0,f(b)=m*E 下证f(x)在[a,b]上连续
文档格式:PDF 文档大小:62.23KB 文档页数:3
then there exists AE R\ such that (Kuhn-Tucker condition) G(s') =0 and 1. Lagrange Method for Constrained Optimization FOC: D.L(,\)=0. The following classical theorem is from Takayama(1993, p.114). Theorem A-4 (Sufficieney). Let f and, i= ,..m, be quasi-concave, where Theorem A-1. (Lagrange). For f: and G\\, consider the following G=(.8 ) Let r' satisfy the Kuhn-Tucker condition and the FOC for (A.2). Then, x' problem is a global maximum point if max f() (1)Df(x') =0, and f is locally twice continuously differentiable,or
文档格式:PPT 文档大小:1.68MB 文档页数:47
1、罗尔中值定理 罗尔(Rolle)定理如果函数f(x)在闭区间 a,b]上连续,在开区间(a,b)内可导,且在区间端 一点的函数值相等,即f(a)=f(b),那末在(a,b) 内至少有一点E(a<
文档格式:DOC 文档大小:165.5KB 文档页数:8
从物理学知道,如果物体在做直线运动的过程中受到常力F作用,并且力F的 方向与物体运动的方向 致,那么,当物体移动了距离s时,力F对物体所作的功是W=F·s如果 物体在运动过程中所受到的力 是变化的,那么就遇到变力对物体作功的问题,下面通过例1说明如何计算变力 所作的功
文档格式:PPT 文档大小:687.5KB 文档页数:75
在数学分析中,我们学习过微积分基 本定理 Newton-Leibniz-公式: f(x)dx=fx)=fb)-f(a)5.0.1) 其中,F(x)是被积函数f(x)的原函数。 随着学习的不断深化,发现Newton- Leibniz公式有很大的局限性
文档格式:PDF 文档大小:151.65KB 文档页数:10
1.设a=3i+20j-15k,对下列数量场f(,y,z),分别计算 grad和 div(fa): (1)f(x,y,z)=(x2+y2+z2)2; (2)f(x,y,z)=x2+y2+z2; (3)f(x,y,z)=ln(x2+y2+z2)
文档格式:DOC 文档大小:316.5KB 文档页数:6
一、力矩的功 1力矩的定义 若作用的质点上的力为F,则将r×F定义为力F对0点的力矩,记为M M=rxF M、F、r三者的方向构成右手螺旋关系
文档格式:DOC 文档大小:1.51MB 文档页数:21
1.设A=(-∞,-5)(5,+∞),B=[-10,3),写出AB,AB,AB及 A(AB)的表达式 2.设A、B是任意两个集合,证明对偶律:(AB)C=ACUB 3.设映射f:X→Y,AcX,BCX.证明 (1)(AB)=()(B); (2)f(b)f()f(B)
文档格式:PPT 文档大小:1.04MB 文档页数:49
1、罗尔中值定理 罗尔(Rolle)定理 如果函数f (x)在闭区间 [a,b]上连续,在开区间(a,b)内可导,且在区间端 点的函数值相等,即 f (a) = f (b),那末在(a,b) 内至少有一点(a    b),使得函数f (x)在该 点的导数等于零
首页上页1920212223242526下页末页
热门关键字
搜索一下,找到相关课件或文库资源 899 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有