点击切换搜索课件文库搜索结果(990)
文档格式:DOC 文档大小:229KB 文档页数:4
12.3.2用一个多项式的根和另一个多项式计算结式的公式 命题设 f(x)=ax+a1x-+…+an(a≠0 (x) box\+b- + (bo=0) 如果f(x),g(x)在C[x]中的分解式为 g()= bo (x-B) ).(x-)(1) 那么 R(f,g)=ag(a)=(-1)f(B)(*) 证明在数域K上的n+m+1元多项式环K[x,y1yn21m]中,令 f(x,y,yn)=a(x-y)…(x-yn)(2) g(x,z1,m)=b(x-z)…(x-m)(3)
文档格式:PPT 文档大小:179KB 文档页数:8
16-2平面简谐波波动方程 一、平面简谐波的波动方程 Y B 参考点O点的振动方程为: y= cos+φ) 任意点(B点)的振动方程,即波动方程为: y= Acos(t-x)+
文档格式:DOC 文档大小:208KB 文档页数:4
第四章线性空间与线性变换 4-1线性空间的基本概念 4.1.1线性空间的定义及例 1、线性空间的定义 定义4.1线性空间 设V是一个非空集合,且V上有一个二元运算“+”(V×V→V),又设K为数域,V中的元素与K中的元素有运算数量乘法“·”(K×V→V),且“+”与“·”满足如下性质: 1、加法交换律a,B∈V,有a+B=B+a; 2、加法结合律a,B,y∈V,有(a+B)+y=a+(B+y)
文档格式:DOC 文档大小:131KB 文档页数:6
一、选择填空(每一个空格只能选一个答案,每空1分,本题共24分) 1.在给定的一组滚动轴承中有:6315N416;3240;415:1308:3420。其中有()是重系 列的;有()内径相同;有()类型相同。 A.五种;B.四种;C.三种;D.二种。 2.按齿根弯曲疲劳强度设计的齿轮传动时,应将或中数值()代入 Y Fal Y sal YFa2Y sa2 设计式进行计算
文档格式:DOC 文档大小:783.5KB 文档页数:12
第十七讲曲线积分 课后作业: 阅读:第五章第一节:曲线积分pp.142-151 预习:第五章第二节:Gren公式pp.152--158 作业:习题1:p152:2;3;4;7;8;9;10. 补充题 1.计算下列第一类曲线积分 (1)[(x+y)dl其中C为以0O,O,A(1,O),BO,1)为顶点的三角形的三条边。 [(x0+y3)d,其中C为星形线:xaos+=asnt(0s2m) (3)[(x2+y2+z2)dl,其中C为螺线
文档格式:PPT 文档大小:39.5KB 文档页数:1
如果所要计算的量U对于闭区域D具有可加性(就是说,当 闭区域D分成许多小闭区域时,所求量U相应地分成许多部分 量,且U等于部分量之和),并且在闭区域D内任取一个直径很 小的闭区域do时,相应的部分量可近似地表示为f(x,y)do的形 式,其中(x,y)在do内,则称f(x,y)do为所求量U的元素,记为dU 以它为被积表达式,在闭区域D上积分:
文档格式:DOC 文档大小:140.5KB 文档页数:4
一、二维连续型随机变量的概念 1.定义:设F(x,y)是二维随机变量(X,的联合分布函数,如果存在非负可积函数f(x,y),使 得对于任意实数xy有F(,y)=f(u)dud则称(,是二维连续型随机变量,称fxy)为 (X,的联合概率密度或密度函数
文档格式:PPT 文档大小:569.5KB 文档页数:30
重积分的应用 把定积分的元素法推广到二重积分的应用中 若要计算的某个量U对于闭区域D具有可加性 (即当闭区域D分成许多小闭区域时,所求量U相应 地分成许多部分量,且U等于部分量之和),并且 在闭区域D内任取一个直径很小的闭区域do时, 相应地部分量可近似地表示为f(x,y)do的形式, 其中(x,y)在do内.这个f(x,y)do称为所求量U 的元素,记为dU,所求量的积分表达式为
文档格式:PPT 文档大小:660.5KB 文档页数:28
一阶隐式方程(y未能解出或相当复杂) F(x,y,y)=0,(1 求解—采用引进参数的办法使其变为导数已解出的方程类型. 主要研究以下四种类型
文档格式:DOC 文档大小:506KB 文档页数:5
在实际应用中,有些随机变量往往是两个或两个以上随机变量的函数例如,考虑全 国年龄在40岁以上的人群,用X和Y分别表示一个人的年龄和体重,Z表示这个人的血 压,并且已知Z与X,Y的函数关系式 Z=8(X,), 现希望通过(X,Y)的分布来确定Z的分布.此类问题就是我们将要讨论的两个随机向量函 数的分布问题 在本节中,我们重点讨论两种特殊的函数关系:
首页上页2021222324252627下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有