点击切换搜索课件文库搜索结果(794)
文档格式:PPT 文档大小:1.06MB 文档页数:21
3.3.1 矩阵的加法 3.3.2 矩阵的数乘 3.3.3 矩阵的乘法 3.3.4 矩阵的转置 3.3.5 矩阵的共轭
文档格式:PPT 文档大小:225.5KB 文档页数:43
矩阵运算中定义了加法和负矩阵,就可以定义矩阵的减法.那么定义了矩阵的乘法,是否可以定义矩阵的除法呢?由于矩阵乘法不满足交换律,因此我们不能一般地定义矩阵的除法 .在数的运算中,当数a≠0时,aa-1=a-1a=1,这里 a-1=1/a称为a的倒数,(或称a的逆);在矩阵乘 法运算中,单位矩阵I相当于数的乘法中的1, 则对于一个矩阵A,是否存在一个矩阵A-1,使 得AA-1=A-1A=1呢?如果存在这样的矩阵A-1, 就称A是可逆矩阵,并称A-1是A的逆矩阵
文档格式:PPT 文档大小:133.5KB 文档页数:32
习题一第3题用步枪射击目标5次,设Ai为\第 次击中目标\i=1,2,3,4,5),B为\5次中击中次 数大于2\,用文字叙述下列事件:
文档格式:DOC 文档大小:377.5KB 文档页数:7
4.4向量空间 1.向量空间:设V是具有某些共同性质的n维向量的集合,若 对任意的a,B∈V,有a+B∈V;(加法封闭) 对任意的a∈V,k∈R,有ka∈V.(数乘封闭) 称集合为向量空间 例如:R={x|x=(51,52,,5n),5∈R}是向量空间 Vo={x|x=(0,52,,5n),5∈R}是向量空间 V1={x|x=(1,52,,5n),5∈R}不是向量空间 ∵0(1,52,,5n)=(0,0,,0)V1,即数乘运算不封闭
文档格式:DOC 文档大小:61.5KB 文档页数:3
人教版_七年级上册_数学_七数上(RJ)--3.学案_1.3.1 第1课时 有理数的加法法则
文档格式:DOC 文档大小:102.5KB 文档页数:1
8-3模m的剩余类环 8.3.1模m的剩余类环的定义 定义8.7设m设一个正整数,定义 /(m)={a+(m)a∈} 将模m的剩余类a+(m)记作a,现定义Z/m)中的加法和乘法如下: 此两种运算满足8.1.1中除第9)条以外的其余八条性质(其中0称为Z/(m)的零元素,1 称为Z/(m)的单位元素),于是Z/(m)构成一个代数系统,称为Z模理想(m)的剩余类环 或乙模理想(m)的商环
文档格式:DOC 文档大小:254.5KB 文档页数:3
第五章5-1双线性函数 5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足 f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V 到K的一个线性函数(即f为V到K的一个线性映射) 如同一般的线性映射,有以下事实: i)、f:V→K是线性函数当且仅当f(ka+1B)=kf(a)+lf(B) i)、f(0)=0; i)、f(-a)=-f(a) 命题数域K上的n维线性空间V上的线性函数的全体关于函数加法和数乘构成K上 的n维线性空间
文档格式:DOC 文档大小:61.5KB 文档页数:2
人教版_七年级上册_数学各阶段精品试题_同步练习_1.3.1 第1课时 有理数的加法法则
文档格式:PDF 文档大小:348.62KB 文档页数:63
1.1 绪 言 一、信号的概念 二、系统的概念 1.2 信号的描述与分类 一、信号的描述 二、信号的分类 1.3 信号的基本运算 一、加法和乘法 二、时间变换 1.4 阶跃函数和冲激函数 一、阶跃函数 二、冲激函数 三、冲激函数的性质 四、序列δ(k)和ε(k) 1.5 系统的性质及分类 一、系统的定义 二、系统的分类及性质 1.6 系统的描述 一、连续系统 二、离散系统 1.7 LTI系统分析方法概 述
文档格式:DOC 文档大小:1.13MB 文档页数:29
关于数的加、减、乘、除等运算的性质通常称为数的代数性质代数所研究的问题主要涉及数的代数性质,这方面的大部分性质是有理数、实数、复数的 全体所共有的。 定义1设P是由一些复数组成的集合,其中包括0与1.如果P中任意两个数的和、差、积、商(除数不为零)仍然是中的数,那么P就称为一个数域显然全体有理数组成的集合、全体实数组成的集合、全体复数组成的集合都是数域这三个数域分别用字母Q、R、C来代表全体整数组成的集合就不是数域如果数的集合P中任意两个数作某一种运算的结果都仍在P中,就说数集 P对这个运算是封闭的因此数域的定义也可以说成,如果一个包含0,1在内的数集P对于加法、减法、乘法与除法(除数不为零)是封闭的,那么P就称为一个数域
首页上页2324252627282930下页末页
热门关键字
搜索一下,找到相关课件或文库资源 794 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有