点击切换搜索课件文库搜索结果(261)
文档格式:PDF 文档大小:1.38MB 文档页数:11
为了提升航班运行风险预测精度,基于某航空公司2016—2018年航班运行风险数据,在验证15个风险时间序列的混沌特性后,构建基于多变量混沌时间序列的风险预测模型。首先,对15个风险时间序列进行多变量相空间重构,采用主成分分析法(PCA)对相空间进行降维处理;然后,基于迭代预测的方式,分别采用极限学习机、RBF神经网络、回声状态网络和Elman神经网络建立风险短期预测模型;最后,以降维后的相空间作为输入,计算并比较分析未来1~7 d的风险预测结果。结果表明:多变量相空间重构后总维数为62维,经PCA降维处理,降至31维;在不同的预测模型中,降维后RBF模型预测效果最佳;其中,预测第1天结果相对误差<25%出现频数为82.62%,至第5天仍达75%以上;该模型第1天预测结果的修正平均绝对百分比误差(MAPE)值为11.32%,且前5 d均低于20%,满足航空公司使用要求。1~5 d预测结果对航班风险管控具有实践操作价值,证明基于多变量混沌时间序列的风险预测方案可行、有效
文档格式:PDF 文档大小:1.86MB 文档页数:6
传统人群搜索(SOA)算法通过计算搜索方向、搜索步长和搜寻更新个体位置三个步骤进行寻优.它的缺点在于计算量大,种群之间信息交流少,导致寻优速度慢.针对人群搜索算法存在的缺点,本文提出二项交叉算子改进人群搜索算法(BCOISOA)对其改进.在计算搜索步长方面,本文采用随机数与最大函数值位置乘积判断子群位置,进而提高全局寻优计算速率.在更新位置方面,本文提出二项交叉算子加强种群之间的联系,避免在更新搜索方向过程中,算法因局部最优而导致过早收敛,进而达到快速、准确寻找最优解的目的.本文将以上二项交叉算子改进人群搜索-BP神经网络算法应用在二段式磨矿过程中,实现磨矿粒度在线软测量.仿真结果表明,与人群搜索算法和粒子群算法进行比较,二项交叉算子改进人群搜索算法收敛速度更快,预测精度最高,满足对磨矿粒度实时检测的要求
文档格式:PDF 文档大小:465.94KB 文档页数:5
研究了Bi2O3-BaO-SiO2-RxOy玻璃体系的结构及封接性能.应用密度泛函理论计算获得了Bi2O3在SiO2玻璃网络中的能量最优结构,从理论上确定了铋作为网络中间体最可能以[BiO3]形式存在,并讨论了Ba2+、Al3+等在玻璃中的作用及其存在的可能结构.结果表明,该玻璃的热膨胀系数在50~530℃温度为11×10-6 K-1,与氧化钇稳定氧化锆(热膨胀系数10.2×10-6 K-1)电解质和不锈钢SUS430(热膨胀系数11.3×10-6 K-1)合金连接体相匹配.对玻璃粉体进行物相分析表明,该硅酸盐玻璃为非晶体,与理论分析相一致.将氧化钇稳定氧化锆电解质和SUS430合金连接体用Bi-Ba-Si-O玻璃在高温下进行封接实验,结果说明三相界面结合紧密,气密性良好.实验选定的Bi-Ba-Si-O玻璃材料基本满足固体氧化物燃料电池对封接材料的要求
文档格式:PDF 文档大小:548.5KB 文档页数:6
系统研究了面向复杂系统监测时变信号的实时故障检测与识别问题.采用滑窗Mallat小波快速变换克服传统小波变换的时域全局依耐性并提高计算效率,使之适应于实时故障检测;针对时变信号的故障模式识别难题,在故障检测基础上采用改进动态循环神经网络(improved dynamic recurrent neural network,IDRNN)进行智能故障识别.最后将滑动时窗小波检测模块及最优IDRNN网络模块嵌入某型完整卫星姿态控制系统仿真平台进行在线故障诊断.试验结果表明:实时条件下的滑动窗口小波变换与传统小波变换具有一致性,IDRNN对于时变信号识别具有较好的时域泛化能力,将滑窗移动时不变小波方法与IDRNN结合可以实现面向复杂系统监测实时信号的故障检测及复合模式分类
文档格式:PDF 文档大小:451.58KB 文档页数:6
大部分入侵检测系统的实现都会产生大量的报警信息,在一定程度上影响了系统管理,误报率也较高,影响了入侵检测的效果.针对这个问题,提出了一种基于节点关联的报警置信度计算方法,位于对等网络之上,节点在收到一系列入侵报警之后,需要进行节点关联,从而对报警信息进行融合,提取有效报警信息.其中根据关联对象的不同,节点关联又包括报警关联和信任关联两个层次,报警关联可用来判断入侵报警的有效性,信任关联可用来判断发起报警节点的可信性,给出了相关算法.仿真实验表明,使用该报警置信度计算方法可以提高入侵报警的检测准确率
文档格式:PDF 文档大小:3.7MB 文档页数:9
提出了一种联合多种边缘检测算子的无参考质量评价算法,同时考虑一阶和二阶边缘算子,避免了单一算子的局限性.该方法首先将彩色图像转换为灰度图像,然后计算灰度图像的梯度,相对梯度以及LOG特征.本文所使用的特征分为两部分,一部分提取相对梯度方向的标准差,另一部分利用条件熵来量化不同特征之间的相似性和相互关系,并且考虑到人眼特性进行多尺度计算,最后使用自适应增强(AdaBoost)神经网络进行训练和预测.在公共数据库LIVE和TID2008上进行实验,结果表明新方法对失真图像的预测评分与主观评分有较高的一致性,能很好地反映图像质量的视觉感知效果,仅使用10维特征,性能优于现有的主流无参考质量评价算法
文档格式:PDF 文档大小:648.63KB 文档页数:9
为解决进行PM2.5质量浓度预测中多因素回归模型的不稳定、神经网络模型的过拟合及局部最小等问题,提出应用支持向量机和模糊粒化时间序列相结合的方法,对PM2.5质量浓度未来变化趋势和范围进行预测.根据PM2.5不同季节的日变化周期模式,确定以24 h为周期的粒化窗宽,利用三角型隶属函数对数据样本进行特征提取作为支持向量机的输入,并在k重交叉验证法下采用网格划分寻找出模型的最佳参数.以2013年3月—2014年2月北京市海淀区万柳监测点四个季节PM2.5的1 h质量浓度监测值为样本数据,应用该方法建立PM2.5质量浓度的时间序列预测模型,并在MATLAB平台下应用LIBSVM工具实现计算过程.结果表明,基于模糊粒化时间序列的预测模型,能较好解决PM2.5机理性建模方式下由于影响因素考虑不全而造成的预测结果不稳定,对模糊粒子拟合效果较好
文档格式:DOC 文档大小:215.5KB 文档页数:28
MATLAB语言是美国 Mathworks公司研制开发的大型计算软件,自1985年问世 以来,特别是1993年4. x Windows版本的出现,使得 MATLAB语言的使用获得了巨 大的发展。它的强大的矩阵处理与运算功能、丰富的图形绘制能力深受用户的青睐 控制领域的研究者与工程技术人员对此给予了极大关注,国际上众多的知名学者在 此基础上先后开发出一系列的相关工具箱( toolbox),如控制系统工具箱( Control System Toolbox)、神经网络工具箱( Neural Network Toolbox)、系统辨识工具箱 ( Systerm Identification Toolbox)、最优化工具箱( Optimization Toolbox)、鲁 棒控制工具箱( Robust control toolbox)等,以及集成在 MATLAB上的面向结构图的 系统分析平台 Simulink。从而使得 MATLAB的功能得到了全面提高,几乎覆盖了控制 领域各个硏究分支
文档格式:PDF 文档大小:524.83KB 文档页数:8
针对一类具有空间不均匀性的辨识和回归问题,提出了基于小波分析的极限学习机方法.从多分辨率分析的思想出发,构造一簇紧支撑正交小波作为隐层激活函数,并利用改进的误差最小化极限学习机训练输出层权重,避免了新加入高分辨率子网络后的重新训练.同时,由一维多分辨分析的张量积构造了二维多分辨小波极限学习机.进而通过脊波变换将小波学习机扩展到高维空间,对脊波函数的伸缩、方向和位置参数进行优化计算.对具有奇异性的函数仿真结果证明,与标准极限学习机相比,小波极限学习机由于其聚微性能在极短的训练时间内更好地逼近目标.一些实际基准回归问题上的测试验证了脊波极限学习机在其中大部分问题上达到更高的训练和泛化精度
文档格式:PDF 文档大小:1.14MB 文档页数:10
基于K均值聚类法对转炉出钢过程的合金损耗进行了研究,分析了影响合金损耗的关键因素,并将其分为3个聚类,得到转炉出钢合金损耗最低的工艺模式。在此基础上,开发了基于PCA-BP神经网络和混合整数线性规划的合金减量化智能控制系统,并以某炼钢厂为例进行了实际应用。通过对模型进行在线运行,验证了模型的准确性和实用性。使用该模型后,提高了合金化钢液成分准确度,减少由传统人工经验计算配料造成的成本浪费和成分超标等情况,优化了合金配料方案,降低了炼钢合金化成本,不同钢种铁合金加入总成本降低5.95%~14.74%,平均降幅11.72%
首页上页2021222324252627下页末页
热门关键字
搜索一下,找到相关课件或文库资源 261 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有