点击切换搜索课件文库搜索结果(365)
文档格式:PPT 文档大小:769.5KB 文档页数:27
一.平面区域D的面积 二.空间立体Ω的体积 三.曲面的面积 四.质量 五.重心 六.转动惯量 七.万有引力
文档格式:PPT 文档大小:631KB 文档页数:32
Gauss公式 一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了 Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时 Gauss公式也是计算曲面积分的一 有效方法
文档格式:PDF 文档大小:727.64KB 文档页数:101
第十七章 多元函数微分学 §1 偏导数与可微性 §2 复合函数微分法 §3 方向导数与梯度 §4 泰勒公式与极值 第十八章 隐函数定理及应用 §1 隐函数定理 §2 隐函数组定理 §3 几何应用 第十九章 含参量积分 §1 含参量正常积分 §2 含参量反常积分 §3 欧拉积分 第二十章 曲线积分 §1 第一型曲线积分:线密度 §2 第二型曲线积分:变力做工 第二十一章 重积分 §1 二重积分概念与性质 §2 二重积分计算 §3 变量变换 §4 格林公式 §5 三重积分 §6 应用 第二十二章 曲面积分 §1 第一型曲面积分:曲面块质量 §2 第二型曲面积分:流量计算
文档格式:PDF 文档大小:107.72KB 文档页数:7
1.求下列第二类曲线积分: (1)(x2+y2)dx+(x2-y2)dy,其中L是以
文档格式:PDF 文档大小:391.06KB 文档页数:40
第二类曲线积分 设L为空间中一条可求长的连续曲线,起点为 A,终点为B(这 时称L为定向的)。一个质点在力 F = i + j + zyxRzyxQzyxPzyx ),,(),,(),,(),,( k 的作用下沿L从 A移动到B , 我们要计算F zyx ),,( 所作的 功
文档格式:PDF 文档大小:437.69KB 文档页数:49
第一类曲线积分 设一条具有质量的空间曲线 L 上任一点 (, ,) x y z 处的线密度为 ρ (, ,) x y z 。将 L 分成 n 个小曲线段 Li = \,,2,1( ni ),并在 Li 上任取一点 ),,(ξ η ζ iii ,那么当每个Li的长度Δ si 都很小时,Li的质量就近似地等于 iiii ρ ξ η ζ ),,( Δs ,于是整条L的质量就近似地等于
文档格式:PPT 文档大小:3.03MB 文档页数:49
第一类曲线积分 设一条具有质量的空间曲线L上任一点(x,y,z)处的线密度为 p(x,y,z)将L分成n个小曲线段L(i=1,2,…n),并在l上任取一点 (5,n,5),那么当每个L1的长度△都很小时,L的质量就近似地等于 i2li p(5,n,5)△,于是整条L的质量就近似地等于 ∑ (5,n,5)S1 当对L的分割越来越细时,这个近似值的极限就是L的质量
文档格式:PPT 文档大小:1.37MB 文档页数:40
第二类曲线积分 设L 为空间中一条可求长的连续曲线,起点为 A,终点为B(这 时称L 为定向的)。一个质点在力 F(x, y,z) = P(x, y,z)i + Q(x, y,z) j + R(x, y,z)k 的作用下沿L 从 A移动到B , 我们要计算F(x, y,z)所作的 功
文档格式:PDF 文档大小:154.85KB 文档页数:10
1.求下列第一类曲线积分: (1)(x+y)ds,其中L是以O(0,0),A(,0),B(1)为顶点的三角形; (2)∫ylds,其中L为单位圆周x2+y2=1; (3)x3ds,其中L为星形线x213+y23=a23;
文档格式:PPT 文档大小:451KB 文档页数:27
曲线积分与曲面积分 前一章我们已经把积分概念从积分范围的角度 从数轴上的一个区间推广到平面或空间内的一个 区域,在应用领域,有时常常会遇到计算密度不 均匀的曲线的质量、变力对质点所作的功、通过 某曲面的流体的流量等,为解决这些问题,需要 对积分概念作进一步的推广,引进曲线积分和曲 面积分的概念,给出计算方法,这就是本章的中 心内容,此外还要介绍 Green公式、 Gauss公 式和 Stokes公式,这些公式揭示了存在于各 种积分之间的某种联系
首页上页2526272829303132下页末页
热门关键字
搜索一下,找到相关课件或文库资源 365 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有