点击切换搜索课件文库搜索结果(990)
文档格式:DOC 文档大小:68KB 文档页数:5
一、教学目标与基本要求 1、教学目标 本章从曲顶柱体的体积和平面薄片的质量这两个实际例子引入二重积分的概念,不 加以证明地指出二重积分存在的充分条件对二重积分的性质只加以叙述,而不予证明, 将三重积分自然地看成是二重积分的推广总的精神就是对概念和性质不作分析上的严 格要求,而把重点放在讨论二重积分和三重积分的计算上,计算二重积分和三重积分的 基本途径是将它们化为二次与三次积分,但在直角坐标系下计算二次与三次积分有时会 比较困难
文档格式:PPT 文档大小:835.5KB 文档页数:19
前面讨论的定积分不仅要求积分区间[a,b]有限,而且 还要求被积函数f(x)在[a,b]上有界.然而实际还经常遇到 无限区间或无界函数的积分问题.这两类积分统称为广义 积分.其中前者称为无穷积分,后者称为瑕积分. 对于广义积分的计算是以极限为工具来解决的,即先 将广义积分转化为定积分,再对该定积分求极限
文档格式:DOC 文档大小:503.5KB 文档页数:8
第六章不定积分 CThe indefinite integration 6-1原函数和不定积分 6-1-1原函数概念及性质 6-1-2不定积分概念及性质 5-1-3基本积分表及凑微分法 6-2不定积分方法 6-21变量置换法 6-2-2分部积分法 63有理函数的积分 6-3-1最简分式的积分 6-3-2有理函数的积分 6-4其他可积成有限形式的函数类 6-4-1三角有理式的积分 第十四讲原函数及不定积分 课后作业: 阅读:第六章61:pp206-210;6.2:p2ll-214 预习:第六章62:pp214-216;63:pp218-22:6.4:pp224-230 练习pp.210-21:2习题61 复习题全部;习题1;2;3(1)-(8)
文档格式:PPT 文档大小:1.02MB 文档页数:37
上一节我们建立了积分学两类基本问题 之间的联系——微积分基本公式,利用这 个公式计算定积分的关键是求出不定积分 ,而换元法和分部积分法是求不定积分的 两种基本方法,如果能把这两种方法直接 应用到定积分的计算,相信定能使得定积 分的计算简化,下面我们就来建立定积分 的换元积分公式和分部积分公式
文档格式:PPT 文档大小:2.41MB 文档页数:78
§1 不定积分概念与基本积分公式 不定积分是求导运算的逆运算. 一、原函数 四、基本积分表 三、不定积分的几何意义 二、不定积分 §2 换元积分法与分部积分法 一、第一换元积分法 二、第二换元积分法 三、分部积分法 §3 有理函数和可化为 一、有理函数的部分分式分解 四、某些无理函数的不定积分 三、三角函数有理式的不定积分 二、有理真分式的递推公式
文档格式:PPT 文档大小:801.5KB 文档页数:44
定积分的概念 前一章我们从导数的逆运算引出了不定积 分,系统地介绍了积分法,这是积分学的第一类 基本问题。本章先从实例出发,引出积分学的第 二类基本问题定积分,它是微分(求局部量 )的逆运算(微分的无限求和求总量),然 后着重介绍定积分的计算方法,它在科学技术领 域中有着极其广泛的应用。 重点定积分的概念和性质,微积分基本公 式,定积分的换元法和分部积分法 难点定义及换元法和分部法的运用
文档格式:PDF 文档大小:1.17MB 文档页数:126
§10.1 二重积分的概念与性质 一、二重积分的概念 二、二重积分的性质 §10.2 二重积分的计算法 一、利用直角坐标计算二重积分 二、利用极坐标计算二重积分 §10.3 三重积分 一、三重积分的概念 二、三重积分的计算 §10.4 重积分的应用 1.立体的体积 2.曲面的面积 3.质心 4.转动惯量 5.引力
文档格式:PDF 文档大小:134.12KB 文档页数:4
教学目的本节介绍积分的一些基本性质,包括积分的线性性质,积分的 不等式性质和积分的绝对连续性等.这些性质都没有涉及到积分号下取极限 的问题,积分取极限的性质讲在下一节介绍 本节要点一般测度空间上的积分除了具有一些与经典积分类似的性质 外还具有一些新的性质应注意比较学习本节的内容,除了应了解积分的基 本性质外,还应注意掌握一些基本的证明技巧 本节所有的讨论都是给定的测度空间(X,,μ)进行的
文档格式:PDF 文档大小:148.57KB 文档页数:4
教学目的 本节介绍积分的一些基本性质, 包括积分的线性性质, 积分 的不等式性质和积分的绝对连续性等. 这些性质都没有涉及到积分号下取极 限的问题, 积分取极限的性质讲在下一节介绍. 本节要点 一般测度空间上的积分,除了具有一些与经典积分类似的性 质外,还具有一些新的性质.应注意比较.学习本节的内容, 除了应了解积分的 基本性质外, 还应注意掌握一些基本的证明技巧
文档格式:PDF 文档大小:201.83KB 文档页数:8
在引言中我们已经提到, Riemann积分在处理连续函数或者逐段连续函数时,在计算 些几何和物理的量时它是很有用的.但它也存在一些缺陷,使得 Riemann积分在处理分析数 学中的一些问题时显得不够有力.因此需要建立新的积分的理论二十世纪初, Lebesgue建 立了一种新的积分理论.新的积分理论消除了上述缺陷,并且包含了原有的 Riemann积分理 论.这就是本章将要介绍的 Lebesgue积分理论 由于现代数学的许多分支如概率论,泛函分析,群上调和分析等越来越多的用到一般 空间上的测度与积分理论,因此我们将在一般的测度空间上介绍积分理论
上页12345678下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有