点击切换搜索课件文库搜索结果(328)
文档格式:PDF 文档大小:218.92KB 文档页数:30
一、本单元的内容要点 1函数的极值与极值点的定义 若存在点x的去心领域U(xo,),使得Vx∈U(x,δ) 有f(x)>f(xo)(f(x)
文档格式:PPT 文档大小:374KB 文档页数:25
函数展开成幂级数 由于幂级数在收敛域内确定了一个和函数,因此我们就有可能利用幂级数来表示函数。如果一个函数已经表示为幂级数,那末该函数的导数、积分等问题就迎刃而解
文档格式:PPT 文档大小:676.5KB 文档页数:24
一、区域连通性的分类 设D为平面区域,如果D内任一闭曲线所 围成的部分都属于D,则称D为平面单连通区 域,否则称为复连通区域. 单连通区域 复连通区域
文档格式:PPT 文档大小:705.5KB 文档页数:42
Fourier级数 前面两节我们讨论了一般项是非负整数次幂的 幂函数的函数项级级数,给出了幂级数 的收敛半径和收敛域的求法,讨论了函数展开为 幂级数的条件及函数展开为幂级数的直接展开法、 间接展开法。 从本节开始我们来讨论一般项是三角函数的函 数项级-角级数,重点讨论如何把函数展 开为三角级数的问题
文档格式:PPT 文档大小:801.5KB 文档页数:44
定积分的概念 前一章我们从导数的逆运算引出了不定积 分,系统地介绍了积分法,这是积分学的第一类 基本问题。本章先从实例出发,引出积分学的第 二类基本问题定积分,它是微分(求局部量 )的逆运算(微分的无限求和求总量),然 后着重介绍定积分的计算方法,它在科学技术领 域中有着极其广泛的应用。 重点定积分的概念和性质,微积分基本公 式,定积分的换元法和分部积分法 难点定义及换元法和分部法的运用
文档格式:DOC 文档大小:253.5KB 文档页数:5
12-3张量 12.3.1线性变换的张量积的矩阵与线性变换的矩阵的关系 设V是域K上的n维线性空间,G和是V的两组基,且 (n)= (1) 设a∈V在(1n)下的坐标为(x1,x),则由前面的知识,可得 x :=T (2) ) 由此可知,坐标是逆变的 现在考虑V的对偶空间n在的对偶基为f,在v的 对偶基为gg,那么就有
文档格式:PDF 文档大小:164.44KB 文档页数:5
一.(本题共40分)给定有理数域上的多项式f(x)=x4+3x2+3 1.(本题5分)证明f(x)为中的不可约多项式 2.(本题5分)设a是f(x)在复数域C内的一个根.定义 Qa]= {ao +aa+a2a2}. 证明:对于任意的g(x)∈x],有g(a)∈a];又对于任意的B,ya,有 Bry Qa 3.(本题5分)接上题.证明:若B∈Qa],B≠0,则存在∈a],使得y=1. 4.(本题15分)找出f(x)的一个sturm序列.判断f(x)有几个实根. 5.(本题10分)求下面三阶方阵在有理数域Q上的最小多项式:
文档格式:DOC 文档大小:51.5KB 文档页数:1
准对角矩阵称为 Jordan形矩阵,而主对角线上的小块方阵J称为 Jordan块 定理设A是数域K上的n维线性空间V上的线性变换.如果A的特征值全属于K, 则A在V的某组基下的矩阵为 Jordan形,并且在不计 Jordan块的意义下 Jordan形是唯 一的. 证明:对n作数学归纳法
文档格式:DOC 文档大小:208KB 文档页数:4
第四章线性空间与线性变换 4-1线性空间的基本概念 4.1.1线性空间的定义及例 1、线性空间的定义 定义4.1线性空间 设V是一个非空集合,且V上有一个二元运算“+”(V×V→V),又设K为数域,V中的元素与K中的元素有运算数量乘法“·”(K×V→V),且“+”与“·”满足如下性质: 1、加法交换律a,B∈V,有a+B=B+a; 2、加法结合律a,B,y∈V,有(a+B)+y=a+(B+y)
文档格式:DOC 文档大小:80KB 文档页数:2
3线性方程组 1.3.1数域K上的线性方程组的初等变换 举例说明解线性方程组的 Gauss消元法。 定义(线性方程组的初等变换)数域K上的线性方程组的如下三种变换 (1)互换两个方程的位置 (2)把某一个方程两边同乘数域K内一个非零元素c; (3)把某一个方程加上另一个方程的k倍,这里k∈K 的每一种都称为线性方程组的初等变换。 容易证明,初等变换可逆,即经过初等变换后的线性方程组可以用初等变换复原。 命题线性方程组经过初等变换后与原方程组同解
首页上页2627282930313233下页末页
热门关键字
搜索一下,找到相关课件或文库资源 328 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有